Filter by
-
Type
Scientific Publications
The immune space a concept and template for rationalizing vaccine development
Manrique A, Adams E, Barouch DH, Fast P, Graham BS, Kim JH, Kublin JG, McCluskey M, Pantaleo G, Robinson HL, Russell N, Snow W, Johnston MI
The immune space: a concept and template for rationalizing vaccine development. AIDS Res. Hum. Retroviruses 2014;30(11):1017-22 doi: 10.1089/AID.2014.0040
Abstract
Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The 'immune space template' proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This 'immune space' approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.
Scientific Publications
The stem of vesicular stomatitis virus G can be replaced with the HIV 1 Env membrane proximal external region without loss of G function or membrane proximal external region antigenic properties
Lorenz IC, Nguyen HT, Kemelman M, Lindsay RW, Yuan M, Wright KJ, Arendt H, Back JW, DeStefano J, Hoffenberg S, Morrow G, Jurgens CK, Phogat SK, Zamb TJ, Parks CL
The stem of vesicular stomatitis virus G can be replaced with the HIV-1 Env membrane-proximal external region without loss of G function or membrane-proximal external region antigenic properties. AIDS Res. Hum. Retroviruses 2014;30(11):1130-44 doi: 10.1089/AID.2013.0206
Abstract
The structure of the HIV-1 envelope membrane-proximal external region (MPER) is influenced by its association with the lipid bilayer on the surface of virus particles and infected cells. To develop a replicating vaccine vector displaying MPER sequences in association with membrane, Env epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, or both were grafted into the membrane-proximal stem region of the vesicular stomatitis virus (VSV) glycoprotein (G). VSV encoding functional G-MPER chimeras based on G from the Indiana or New Jersey serotype propagated efficiently, although grafting of both epitopes (G-2F5-4E10) modestly reduced replication and resulted in the acquisition of one to two adaptive mutations in the grafted MPER sequence. Monoclonal antibodies 2F5 and 4E10 efficiently neutralized VSV G-MPER vectors and bound to virus particles in solution, indicating that the epitopes were accessible in the preattachment form of the G-MPER chimeras. Overall, our results showed that the HIV Env MPER could functionally substitute for the VSV G-stem region implying that both perform similar functions even though they are from unrelated viruses. Furthermore, we found that the MPER sequence grafts induced low but detectable MPER-specific antibody responses in rabbits vaccinated with live VSV, although additional vector and immunogen modifications or use of a heterologous prime-boost vaccination regimen will be required to increase the magnitude of the immune response.
Scientific Publications
Acceptability and feasibility of repeated mucosal specimen collection in clinical trial participants in Kenya
Omosa-Manyonyi G, Park H, Mutua G, Farah B, Bergin PJ, Laufer D, Lehrman J, Chinyenze K, Barin B, Fast P, Gilmour J, Anzala O
Acceptability and feasibility of repeated mucosal specimen collection in clinical trial participants in Kenya. PLoS ONE 2014;9(10):e110228 doi: 10.1371/journal.pone.0110228
Abstract
Mucosal specimens are essential to evaluate compartmentalized immune responses to HIV vaccine candidates and other mucosally targeted investigational products. We studied the acceptability and feasibility of repeated mucosal sampling in East African clinical trial participants at low risk of HIV and other sexually transmitted infections.
Scientific Publications
Toward a more accurate view of human B cell repertoire by next generation sequencing unbiased repertoire capture and single molecule barcoding
He L, Sok D, Azadnia P, Hsueh J, Landais E, Simek M, Koff WC, Poignard P, Burton DR, Zhu J
Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep 2014;4:6778 doi: 10.1038/srep06778
doi: 10.1038/srep06778
Abstract
B-cell repertoire analysis using next-generation sequencing has become a valuable tool for interrogating the genetic record of humoral response to infection. However, key obstacles such as low throughput, short read length, high error rate, and undetermined bias of multiplex PCR method have hindered broader application of this technology. In this study, we report several technical advances in antibody repertoire sequencing. We first demonstrated the ability to sequence antibody variable domains using the Ion Torrent PGM platform. As a test case, we analyzed the PGT121 class of antibodies from IAVI donor 17, an HIV-1-infected individual. We then obtained 'unbiased' antibody repertoires by sequencing the 5'-RACE PCR products of B-cell transcripts from IAVI donor 17 and two HIV-1-uninfected individuals. We also quantified the bias of previously published gene-specific primers by comparing the repertoires generated by 5'-RACE PCR and multiplex PCR. We further developed a single-molecule barcoding strategy to reduce PCR-based amplification noise. Lastly, we evaluated several new PGM technologies in the context of antibody sequencing. We expect that, based upon long-read and high-fidelity next-generation sequencing technologies, the unbiased analysis will provide a more accurate view of the overall antibody repertoire while the barcoding strategy will facilitate high-resolution analysis of individual antibody families.
Scientific Publications
Structure and immune recognition of trimeric pre fusion HIV 1 Env
Pancera M, Zhou T, Druz A, Georgiev IS, Soto C, Gorman J, Huang J, Acharya P, Chuang GY, Ofek G, Stewart-Jones GB, Stuckey J, Bailer RT, Joyce MG, Louder MK, Tumba N, Yang Y, Zhang B, Cohen MS, Haynes BF, Mascola JR, Morris L, Munro JB, Blanchard SC, Mothes W, Connors M, Kwong PD
Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 2014;514(7523):455-61 doi: 10.1038/nature13808
doi: 10.1038/nature13808
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.
Scientific Publications
Independent assessment of candidate HIV incidence assays on specimens in the CEPHIA repository
Kassanjee R, Pilcher CD, Keating SM, Facente SN, McKinney E, Price MA, Martin JN, Little S, Hecht FM, Kallas EG, Welte A, Busch MP, Murphy G
Independent assessment of candidate HIV incidence assays on specimens in the CEPHIA repository. AIDS 2014;28(16):2439-49 doi: 10.1097/QAD.0000000000000429
Abstract
Cross-sectional HIV incidence surveillance, using assays that distinguish 'recent' from 'nonrecent' infections, has been hampered by inadequate performance and characterization of incidence assays. In this study, the Consortium for the Evaluation and Performance of HIV Incidence Assays presents results of the first independent evaluation of five incidence assays (BED, Limiting Antigen Avidity, Less-sensitive Vitros, Vitros Avidity and BioRad Avidity).
Scientific Publications
Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5
Azoitei ML, Ban YA, Kalyuzhny O, Guenaga J, Schroeter A, Porter J, Wyatt R, Schief WR
Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5. Proteins 2014;82(10):2770-82 doi: 10.1002/prot.24641
doi: 10.1002/prot.24641
Abstract
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity.
Scientific Publications
Structural evolution of glycan recognition by a family of potent HIV antibodies
Garces F, Sok D, Kong L, McBride R, Kim HJ, Saye-Francisco KF, Julien JP, Hua Y, Cupo A, Moore JP, Paulson JC, Ward AB, Burton DR, Wilson IA
Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 2014;159(1):69-79 doi: S0092-8674(14)01157-X
Abstract
The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.
Scientific Publications
An assessment of fishing communities around Lake Victoria Uganda as potential populations for future HIV vaccine efficacy studies an observational cohort study
Kiwanuka N, Mpendo J, Nalutaaya A, Wambuzi M, Nanvubya A, Kitandwe PK, Muyanja E, Ssempiira J, Balyegisawa A, Ssetaala A
An assessment of fishing communities around Lake Victoria, Uganda, as potential populations for future HIV vaccine efficacy studies: an observational cohort study. BMC Public Health 2014;14:986 doi: 10.1186/1471-2458-14-986
Abstract
An effective HIV vaccine is still elusive. Of the 9 HIV preventive vaccine efficacy trials conducted to-date, only one reported positive results of modest efficacy. More efficacy trials need to be conducted before one or more vaccines are eventually licensed. We assessed the suitability of fishing communities in Uganda for future HIV vaccine efficacy trials.
Scientific Publications
A novel live attenuated vesicular stomatitis virus vector displaying conformationally intact functional HIV 1 envelope trimers that elicits potent cellular and humoral responses in mice
Rabinovich S, Powell RL, Lindsay RW, Yuan M, Carpov A, Wilson A, Lopez M, Coleman JW, Wagner D, Sharma P, Kemelman M, Wright KJ, Seabrook JP, Arendt H, Martinez J, DeStefano J, Chiuchiolo MJ, Parks CL
A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice. PLoS ONE 2014;9(9):e106597 doi: 10.1371/journal.pone.0106597
Abstract
Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.
Scientific Publications
Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV 1 Env by negative stain single particle electron microscopy
Murin CD, Julien JP, Sok D, Stanfield RL, Khayat R, Cupo A, Moore JP, Burton DR, Wilson IA, Ward AB
Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J. Virol. 2014;88(17):10177-88 doi: 10.1128/JVI.01229-14
doi: 10.1128/jvi.01229-14
Abstract
The neutralizing anti-HIV-1 antibody 2G12 is of particular interest due to the sterilizing protection it provides from viral challenge in animal models. 2G12 is a unique, domain-exchanged antibody that binds exclusively to conserved N-linked glycans that form the high-mannose patch on the gp120 outer domain centered on a glycan at position N332. Several glycans in and around the 2G12 epitope have been shown to interact with other potent, broadly neutralizing antibodies; therefore, this region constitutes a supersite of vulnerability on gp120. While crystal structures of 2G12 and 2G12 bound to high-mannose glycans have been solved, no structural information that describes the interaction of 2G12 with gp120 or the Env trimer is available. Here, we present a negative-stain single-particle electron microscopy reconstruction of 2G12 Fab2 in complex with a soluble, trimeric Env at ∼17-Å resolution that reveals the antibody's interaction with its native and fully glycosylated epitope. We also mapped relevant glycans in this epitope by fitting high-resolution crystal structures and by performing neutralization assays of glycan knockouts. In addition, a reconstruction at ∼26 Å of the ternary complex formed by 2G12 Fab2, soluble CD4, and Env indicates that 2G12 may block membrane fusion by induced steric hindrance upon primary receptor binding, thereby abrogating Env's interaction with coreceptor(s). These structures provide a basis for understanding 2G12 binding and neutralization, and our low-resolution model and glycan assignments provide a basis for higher-resolution studies to determine the molecular nature of the 2G12 epitope.
Scientific Publications
Host genetics and viral load in primary HIV 1 infection clear evidence for gene by sex interactions
Li X, Price MA, He D, Kamali A, Karita E, Lakhi S, Sanders EJ, Anzala O, Amornkul PN, Allen S, Hunter E, Kaslow RA, Gilmour J, Tang J
Host genetics and viral load in primary HIV-1 infection: clear evidence for gene by sex interactions. Hum. Genet. 2014;133(9):1187-97 doi: 10.1007/s00439-014-1465-x
Abstract
Research in the past two decades has generated unequivocal evidence that host genetic variations substantially account for the heterogeneous outcomes following human immunodeficiency virus type 1 (HIV-1) infection. In particular, genes encoding human leukocyte antigens (HLA) have various alleles, haplotypes, or specific motifs that can dictate the set-point (a relatively steady state) of plasma viral load (VL), although rapid viral evolution driven by innate and acquired immune responses can obscure the long-term relationships between HLA genotypes and HIV-1-related outcomes. In our analyses of VL data from 521 recent HIV-1 seroconverters enrolled from eastern and southern Africa, HLA-A*03:01 was strongly and persistently associated with low VL in women (frequency = 11.3 %, P < 0.0001) but not in men (frequency = 7.7 %, P = 0.66). This novel sex by HLA interaction (P = 0.003, q = 0.090) did not extend to other frequent HLA class I alleles (n = 34), although HLA-C*18:01 also showed a weak association with low VL in women only (frequency = 9.3 %, P = 0.042, q > 0.50). In a reduced multivariable model, age, sex, geography (clinical sites), previously identified HLA factors (HLA-B*18, B*45, B*53, and B*57), and the interaction term for female sex and HLA-A*03:01 collectively explained 17.0 % of the overall variance in geometric mean VL over a 3-year follow-up period (P < 0.0001). Multiple sensitivity analyses of longitudinal and cross-sectional VL data yielded consistent results. These findings can serve as a proof of principle that the gap of 'missing heritability' in quantitative genetics can be partially bridged by a systematic evaluation of sex-specific associations.
Scientific Publications
HIV 1 receptor binding site directed antibodies using a VH1 2 gene segment orthologue are activated by Env trimer immunization
Navis M, Tran K, Bale S, Phad GE, Guenaga J, Wilson R, Soldemo M, McKee K, Sundling C, Mascola J, Li Y, Wyatt RT, Karlsson Hedestam GB
HIV-1 receptor binding site-directed antibodies using a VH1-2 gene segment orthologue are activated by Env trimer immunization. PLoS Pathog. 2014;10(8):e1004337 doi: 10.1371/journal.ppat.1004337
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env) spike such as the primary receptor CD4 binding site (CD4bs). Many CD4bs-directed bNAbs use the same heavy (H) chain variable (V) gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71), the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb), GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L) chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01.