Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Neurovirulence and immunogenicity of attenuated recombinant vesicular stomatitis viruses in nonhuman primates

Clarke DK, Nasar F, Chong S, Johnson JE, Coleman JW, Lee M, Witko SE, Kotash CS, Abdullah R, Megati S, Luckay A, Nowak B, Lackner A, Price RE, Little P, Kalyan N, Randolf V, Javadian A, Zamb TJ, Parks CL, Egan MA, Eldridge J, Hendry M, Udem SA

Neurovirulence and immunogenicity of attenuated recombinant vesicular stomatitis viruses in nonhuman primates. J. Virol. 2014;88(12):6690-701 doi: 10.1128/JVI.03441-13

Abstract

In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation.

Scientific Publications

Acute HIV 1 infection is as common as malaria in young febrile adults seeking care in coastal Kenya

Sanders EJ, Mugo P, Prins HA, Wahome E, Thiong'o AN, Mwashigadi G, van der Elst EM, Omar A, Smith AD, Graham SM

Acute HIV-1 infection is as common as malaria in young febrile adults seeking care in coastal Kenya. AIDS 2014;28(9):1357-63 doi: 10.1097/QAD.0000000000000245

Abstract

Febrile adults are usually not tested for acute HIV-1 infection (AHI) in Africa. We assessed a strategy to diagnose AHI among young adult patients seeking care.

Scientific Publications

HIV 1 testing of young febrile adults seeking care for fever in sub Sahara Africa

Sanders EJ

HIV-1 testing of young febrile adults seeking care for fever in sub-Sahara Africa. Int Health 2014;6(2):77-8 doi: 10.1093/inthealth/ihu026

Scientific Publications

Diagnosing acute and prevalent HIV 1 infection in young African adults seeking care for fever a systematic review and audit of current practice

Prins HA, Mugo P, Wahome E, Mwashigadi G, Thiong'o A, Smith A, Sanders EJ, Graham SM

Diagnosing acute and prevalent HIV-1 infection in young African adults seeking care for fever: a systematic review and audit of current practice. Int Health 2014;6(2):82-92 doi: 10.1093/inthealth/ihu024

Abstract

Fever is a common complaint in HIV-1 infected adults and may be a presenting sign of acute HIV-1 infection (AHI). We investigated the extent to which HIV-1 infection was considered in the diagnostic evaluation of febrile adults in sub-Saharan Africa (SSA) through a systematic review of published literature and guidelines in the period 2003-2014. We also performed a detailed audit of current practice for the evaluation of febrile young adults in coastal Kenya. Our review identified 43 studies investigating the aetiology of fever in adult outpatients in SSA. While the guidelines identified recommend testing for HIV-1 infection, none mentioned AHI. In our audit of current practice at nine health facilities, only 189 out of 1173 (16.1%) patients, aged 18-29 years, were tested for HIV-1. In a detailed record review, only 2 out of 39 (5.1%) young adults seeking care for fever were tested for HIV-1, and the possibility of AHI was not mentioned. Available literature on adult outpatients presenting with fever is heavily focused on diagnosing malaria and guidelines are poorly defined in terms of evaluating aetiologies other than malaria. Current practice in coastal Kenya shows poor uptake of provider-initiated HIV-1 testing and AHI is not currently considered in the differential diagnosis.

Scientific Publications

High incidence of HIV 1 infection in a general population of fishing communities around Lake Victoria Uganda

Kiwanuka N, Ssetaala A, Nalutaaya A, Mpendo J, Wambuzi M, Nanvubya A, Sigirenda S, Kitandwe PK, Nielsen LE, Balyegisawa A, Kaleebu P, Nalusiba J, Sewankambo NK

High incidence of HIV-1 infection in a general population of fishing communities around Lake Victoria, Uganda. PLoS ONE 2014;9(5):e94932 doi: 10.1371/journal.pone.0094932

Abstract

High HIV-1 incidence rates were reported among persons in fisherfolk communities (FFC) in Uganda who were selected for high risk behaviour. We assessed the incidence of HIV-1 and associated risk factors in a general population FFC to determine population-wide HIV rates.

Scientific Publications

Profiling human antibody responses by integrated single cell analysis

Ogunniyi AO, Thomas BA, Politano TJ, Varadarajan N, Landais E, Poignard P, Walker BD, Kwon DS, Love JC

Profiling human antibody responses by integrated single-cell analysis. Vaccine 2014;32(24):2866-73 doi: 10.1016/j.vaccine.2014.02.020

Abstract

Comprehensive characterization of the antigen-specific B cells induced during infections or following vaccination would facilitate the discovery of novel antibodies and inform how interventions shape protective humoral responses. The analysis of human B cells and their antibodies has been performed using flow cytometry to evaluate memory B cells and expanded plasmablasts, while microtechnologies have also provided a useful tool to examine plasmablasts/plasma cells after vaccination. Here we present an integrated analytical platform, using arrays of subnanoliter wells (nanowells), for constructing detailed profiles for human B cells comprising the immunophenotypes of these cells, the distribution of isotypes of the secreted antibodies, the specificity and relative affinity for defined antigens, and for a subset of cells, the genes encoding the heavy and light chains. The approach combines on-chip image cytometry, microengraving, and single-cell RT-PCR. Using clinical samples from HIV-infected subjects, we demonstrate that the method can identify antigen-specific neutralizing antibodies, is compatible with both plasmablasts/plasma cells and activated memory B cells, and is well-suited for characterizing the limited numbers of B cells isolated from tissue biopsies (e.g., colon biopsies). The technology should facilitate detailed analyses of human humoral responses for evaluating vaccines and their ability to raise protective antibody responses across multiple anatomical compartments.

Scientific Publications

Adaptation of the African couples HIV testing and counseling model for men who have sex with men in the United States an application of the ADAPT ITT framework

Sullivan PS, Stephenson R, Grazter B, Wingood G, Diclemente R, Allen S, Hoff C, Salazar L, Scales L, Montgomery J, Schwartz A, Barnes J, Grabbe K

Adaptation of the African couples HIV testing and counseling model for men who have sex with men in the United States: an application of the ADAPT-ITT framework. Springerplus 2014;3:249 doi: 10.1186/2193-1801-3-249

Abstract

To respond to the need for new HIV prevention services for men who have sex with men (MSM) in the United States, and to respond to new data on the key role of main partnerships in US MSM epidemics, we sought to develop a new service for joint HIV testing of male couples. We used the ADAPT-ITT framework to guide our work. From May 2009 to July 2013, a multiphase process was undertaken to identify an appropriate service as the basis for adaptation, collect data to inform the adaptation, adapt the testing service, develop training materials, test the adapted service, and scale up and evaluate the initial version of the service. We chose to base our adaptation on an African couples HIV testing service that was developed in the 1980s and has been widely disseminated in low- and middle-income countries. Our adaptation was informed by qualitative data collections from MSM and HIV counselors, multiple online surveys of MSM, information gathering from key stakeholders, and theater testing of the adapted service with MSM and HIV counselors. Results of initial testing indicate that the adapted service is highly acceptable to MSM and to HIV counselors, that there are no evident harms (e.g., intimate partner violence, relationship dissolution) associated with the service, and that the service identifies a substantial number of HIV serodiscordant male couples. The story of the development and scale-up of the adapted service illustrates how multiple public and foundation funding sources can collaborate to bring a prevention adaptation from concept to public health application, touching on research, program evaluation, implementation science, and public health program delivery. The result of this process is an adapted couples HIV testing approach, with training materials and handoff from academic partners to public health for assessment of effectiveness and consideration of the potential benefits of implementation; further work is needed to optimally adapt the African couples testing service for use with male-female couples in the United States.

Scientific Publications

Broadly neutralizing HIV antibodies define a glycan dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers

Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang CH, Mcbride R, von Bredow B, Shivatare SS, Wu CY, Chan-Hui PY, Liu Y, Feizi T, Zwick MB, Koff WC, Seaman MS, Swiderek K, Moore JP, Evans D, Paulson JC, Wong CH, Ward AB, Wilson IA, Sanders RW, Poignard P, Burton DR

Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014;40(5):657-68 doi: 10.1016/j.immuni.2014.04.009

Abstract

Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.

Scientific Publications

Structural delineation of a quaternary cleavage dependent epitope at the gp41 gp120 interface on intact HIV 1 Env trimers

Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E, de la Peña AT, Cupo A, Julien JP, van Gils M, Lee PS, Peng W, Paulson JC, Poignard P, Burton DR, Moore JP, Sanders RW, Wilson IA, Ward AB

Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 2014;40(5):669-80 doi: 10.1016/j.immuni.2014.04.008

Abstract

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.

Scientific Publications

Promiscuous glycan site recognition by antibodies to the high mannose patch of gp120 broadens neutralization of HIV

Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien JP, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR

Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014;6(236):236ra63 doi: 10.1126/scitranslmed.3008104

Abstract

Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.

Scientific Publications

Pregnancy incidence and correlates in a clinical trial preparedness study North West Province South Africa

Chetty-Makkan CM, Fielding K, Feldblum PJ, Price MA, Kruger P, Makkan H, Charalambous S, Latka MH

Pregnancy incidence and correlates in a clinical trial preparedness study, North West Province South Africa. PLoS ONE 2014;9(5):e95708 doi: 10.1371/journal.pone.0095708

Abstract

Women in HIV prevention trials often must typically agree to avoid pregnancy. Regardless, some become pregnant. Screening tools predicting pregnancy risk could maximize trial safety and efficiency.

Scientific Publications

Developmental pathway for potent V1V2 directed HIV neutralizing antibodies

Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ, Ernandes MJ, Georgiev IS, Kim HJ, Pancera M, Staupe RP, Altae-Tran HR, Bailer RT, Crooks ET, Cupo A, Druz A, Garrett NJ, Hoi KH, Kong R, Louder MK, Longo NS, McKee K, Nonyane M, O'Dell S, Roark RS, Rudicell RS, Schmidt SD, Sheward DJ, Soto C, Wibmer CK, Yang Y, Zhang Z, Mullikin JC, Binley JM, Sanders RW, Wilson IA, Moore JP, Ward AB, Georgiou G, Williamson C, Abdool Karim SS, Morris L, Kwong PD, Shapiro L, Mascola JR

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 2014;509(7498):55-62 doi: 10.1038/nature13036

Abstract

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.

Scientific Publications

Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection

Derdeyn CA, Moore PL, Morris L

Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 2014;9(3):210-6 doi: 10.1097/COH.0000000000000057

Abstract

Detailed genetic and structural characterization has revealed that broadly neutralizing antibodies (bnAbs) against HIV-1 have unusually high levels of somatic hypermutation, long CDRH3 domains, and the ability to target one of four sites of vulnerability on the HIV-1 envelope (Env) glycoproteins. A current priority is to understand how bnAbs are generated during natural infection, and translate this information into immunogens that can elicit bnAb following vaccination.