Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Cleavage independent HIV 1 Env trimers engineered as soluble native spike mimetics for vaccine design

Sharma SK, de Val N, Bale S, Guenaga J, Tran K, Feng Y, Dubrovskaya V, Ward AB, Wyatt RT

Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep 2015;11(4):539-50 doi: 10.1016/j.celrep.2015.03.047

Abstract

Viral glycoproteins mediate entry by pH-activated or receptor-engaged activation and exist in metastable pre-fusogenic states that may be stabilized by directed rational design. As recently reported, the conformationally fixed HIV-1 envelope glycoprotein (Env) trimers in the pre-fusion state (SOSIP) display molecular homogeneity and structural integrity at relatively high levels of resolution. However, the SOSIPs necessitate full Env precursor cleavage, which requires endogenous furin overexpression. Here, we developed an alternative strategy using flexible peptide covalent linkage of Env subdomains to produce soluble, homogeneous, and cleavage-independent Env mimics, called native flexibly linked (NFL) trimers, as vaccine candidates. This simplified design avoids the need for furin co-expression and, in one case, antibody affinity purification to accelerate trimer scale-up for preclinical and clinical applications. We have successfully translated the NFL design to multiple HIV-1 subtypes, establishing the potential to become a general method of producing native-like, well-ordered Env trimers for HIV-1 or other viruses.

Scientific Publications

Knowledge of HIV serodiscordance transmission and prevention among couples in Durban South Africa

Kilembe W, Wall KM, Mokgoro M, Mwaanga A, Dissen E, Kamusoko M, Phiri H, Sakulanda J, Davitte J, Reddy T, Brockman M, Ndung'u T, Allen S

Knowledge of HIV serodiscordance, transmission, and prevention among couples in Durban, South Africa. PLoS ONE 2015;10(4):e0124548 doi: 10.1371/journal.pone.0124548

Abstract

Couples' voluntary HIV counseling and testing (CVCT) significantly decreases HIV transmission within couples, the largest risk group in sub-Saharan Africa, but it is not currently offered in most HIV testing facilities. To roll out such an intervention, understanding locale-specific knowledge barriers is critical. In this study, we measured knowledge of HIV serodiscordance, transmission, and prevention before and after receipt of CVCT services in Durban.

Scientific Publications

Immunogenetic influences on acquisition of HIV 1 infection consensus findings from two African cohorts point to an enhancer element in IL19 1q32 2

Li X, Zhang K, Pajewski NM, Brill I, Prentice HA, Shrestha S, Kilembe W, Karita E, Allen S, Hunter E, Kaslow RA, Tang J

Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun. ;16(3):213-20 doi: 10.1038/gene.2014.84

Abstract

Numerous reports have suggested that immunogenetic factors may influence human immunodeficiency virus (HIV)-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20 and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single-nucleotide polymorphisms passed quality control procedures. When HIV-1-exposed seronegative subjects (n=486) were compared with newly seroconverted individuals (n=313) and seroprevalent subjects (n=478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio=0.64, P=1.7 × 10(-4) and q=0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.

Scientific Publications

Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV 1 drug resistance an individual patient and sequence level meta analysis

Rhee SY, Blanco JL, Jordan MR, Taylor J, Lemey P, Varghese V, Hamers RL, Bertagnolio S, Rinke de Wit TF, Aghokeng AF, Albert J, Avi R, Avila-Rios S, Bessong PO, Brooks JI, Boucher CA, Brumme ZL, Busch MP, Bussmann H, Chaix ML, Chin BS, D'Aquin TT, De Gascun CF, Derache A, Descamps D, Deshpande AK, Djoko CF, Eshleman SH, Fleury H, Frange P, Fujisaki S, Harrigan PR, Hattori J, Holguin A, Hunt GM, Ichimura H, Kaleebu P, Katzenstein D, Kiertiburanakul S, Kim JH, Kim SS, Li Y, Lutsar I, Morris L, Ndembi N, Ng KP, Paranjape RS, Peeters M, Poljak M, Price MA, Ragonnet-Cronin ML, Reyes-Terán G, Rolland M, Sirivichayakul S, Smith DM, Soares MA, Soriano VV, Ssemwanga D, Stanojevic M, Stefani MA, Sugiura W, Sungkanuparph S, Tanuri A, Tee KK, Truong HM, van de Vijver DA, Vidal N, Yang C, Yang R, Yebra G, Ioannidis JP, Vandamme AM, Shafer RW

Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis. PLoS Med. 2015;12(4):e1001810 doi: 10.1371/journal.pmed.1001810

Abstract

Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.

Scientific Publications

Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose

Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R

Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 2015;25(4):412-9 doi: 10.1093/glycob/cwu123

Abstract

Human immunodeficiency virus-1 (HIV-1) is a major public health threat that continues to infect millions of people worldwide each year. A prophylactic vaccine remains the most cost-effective way of globally reducing and eliminating the spread of the virus. The HIV envelope spike, which is the target of many vaccine design efforts, is densely mantled with carbohydrate and several potent broadly neutralizing antibodies to HIV-1 recognize carbohydrate on the envelope spike as a major part of their epitope. However, immunizing with recombinant forms of the envelope glycoprotein does not typically elicit anti-carbohydrate antibodies. Thus, studies of alternative antigens that may serve as a starting point for carbohydrate-based immunogens are of interest. Here, we present the crystal structure of one such anti-carbohydrate HIV neutralizing antibody (2G12) in complex with the carbohydrate backbone of the lipooligosaccharide from Rhizobium radiobacter strain Rv3, which exhibits a chemical structure that naturally mimics the core high-mannose carbohydrate epitope of 2G12 on HIV-1 gp120. The structure described here provides molecular evidence of the structural homology between the Rv3 oligosaccharide and highly abundant carbohydrates on the surface of HIV-1 and raises the potential for the design of novel glycoconjugates that may find utility in efforts to develop immunogens for eliciting carbohydrate-specific neutralizing antibodies to HIV.

Scientific Publications

An efficiently cleaved HIV 1 clade C Env selectively binds to neutralizing antibodies

Boliar S, Das S, Bansal M, Shukla BN, Patil S, Shrivastava T, Samal S, Goswami S, King CR, Bhattacharya J, Chakrabarti BK

An efficiently cleaved HIV-1 clade C Env selectively binds to neutralizing antibodies. PLoS ONE 2015;10(3):e0122443 doi: 10.1371/journal.pone.0122443

Abstract

An ideal HIV-1 Env immunogen is expected to mimic the native trimeric conformation for inducing broadly neutralizing antibody responses. The native conformation is dependent on efficient cleavage of HIV-1 Env. The clade B isolate, JRFL Env is efficiently cleaved when expressed on the cell surface. Here, for the first time, we report the identification of a native clade C Env, 4-2.J41 that is naturally and efficiently cleaved on the cell surface as confirmed by its biochemical and antigenic characteristics. In addition to binding to several conformation-dependent neutralizing antibodies, 4-2.J41 Env binds efficiently to the cleavage-dependent antibody PGT151; thus validating its native cleaved conformation. In contrast, 4-2.J41 Env occludes non-neutralizing epitopes. The cytoplasmic-tail of 4-2.J41 Env plays an important role in maintaining its conformation. Furthermore, codon optimization of 4-2.J41 Env sequence significantly increases its expression while retaining its native conformation. Since clade C of HIV-1 is the prevalent subtype, identification and characterization of this efficiently cleaved Env would provide a platform for rational immunogen design.

Scientific Publications

Comprehensive antigenic map of a cleaved soluble HIV 1 envelope trimer

Derking R, Ozorowski G, Sliepen K, Yasmeen A, Cupo A, Torres JL, Julien JP, Lee JH, van Montfort T, de Taeye SW, Connors M, Burton DR, Wilson IA, Klasse PJ, Ward AB, Moore JP, Sanders RW

Comprehensive antigenic map of a cleaved soluble HIV-1 envelope trimer. PLoS Pathog. 2015;11(3):e1004767 doi: 10.1371/journal.ppat.1004767

Abstract

The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs.

Scientific Publications

Replicative fitness of transmitted HIV 1 drives acute immune activation proviral load in memory CD4 T cells and disease progression

Claiborne DT, Prince JL, Scully E, Macharia G, Micci L, Lawson B, Kopycinski J, Deymier MJ, Vanderford TH, Nganou-Makamdop K, Ende Z, Brooks K, Tang J, Yu T, Lakhi S, Kilembe W, Silvestri G, Douek D, Goepfert PA, Price MA, Allen SA, Paiardini M, Altfeld M, Gilmour J, Hunter E

Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc. Natl. Acad. Sci. U.S.A. 2015;112(12):E1480-9 doi: 10.1073/pnas.1421607112

Abstract

HIV-1 infection is characterized by varying degrees of chronic immune activation and disruption of T-cell homeostasis, which impact the rate of disease progression. A deeper understanding of the factors that influence HIV-1-induced immunopathology and subsequent CD4(+) T-cell decline is critical to strategies aimed at controlling or eliminating the virus. In an analysis of 127 acutely infected Zambians, we demonstrate a dramatic and early impact of viral replicative capacity (vRC) on HIV-1 immunopathogenesis that is independent of viral load (VL). Individuals infected with high-RC viruses exhibit a distinct inflammatory cytokine profile as well as significantly elevated T-cell activation, proliferation, and CD8(+) T-cell exhaustion, during the earliest months of infection. Moreover, the vRC of the transmitted virus is positively correlated with the magnitude of viral burden in naive and central memory CD4(+) T-cell populations, raising the possibility that transmitted viral phenotypes may influence the size of the initial latent viral reservoir. Taken together, these findings support an unprecedented role for the replicative fitness of the founder virus, independent of host protective genes and VL, in influencing multiple facets of HIV-1-related immunopathology, and that a greater focus on this parameter could provide novel approaches to clinical interventions.

Scientific Publications

High frequency of transmitted HIV 1 Gag HLA class I driven immune escape variants but minimal immune selection over the first year of clade C infection

Gounder K, Padayachi N, Mann JK, Radebe M, Mokgoro M, van der Stok M, Mkhize L, Mncube Z, Jaggernath M, Reddy T, Walker BD, Ndung'u T

High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection. PLoS ONE 2015;10(3):e0119886 doi: 10.1371/journal.pone.0119886

Abstract

In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses.

Scientific Publications

HIV 1 non macrophage tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4 T cells than envelopes highly adapted for macrophages

Musich T, O'Connell O, Gonzalez-Perez MP, Derdeyn CA, Peters PJ, Clapham PR

HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages. Retrovirology 2015;12:25 doi: 10.1186/s12977-015-0141-0

Abstract

Non-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs.

Scientific Publications

Primate immune responses to HIV 1 Env formulated in the saponin based adjuvant AbISCO 100 in the presence or absence of TLR9 co stimulation

Martinez P, Sundling C, O'Dell S, Mascola JR, Wyatt RT, Karlsson Hedestam GB

Primate immune responses to HIV-1 Env formulated in the saponin-based adjuvant AbISCO-100 in the presence or absence of TLR9 co-stimulation. Sci Rep 2015;5:8925 doi: 10.1038/srep08925

Abstract

Protein-based vaccines require adjuvants to achieve optimal responses. Toll-like receptor (TLR) 9 agonists were previously shown to improve responses to protein-based vaccines, such as the Hepatitis B virus vaccine formulated in alum. Here, we used CpG-C together with the clinically relevant saponin-based adjuvant AbISCO-100/Matrix-M (AbISCO), to assess if TLR9 co-stimulation would quantitatively or qualitatively modulate HIV-1 envelope glycoprotein (Env)-specific B and T cell responses in rhesus macaques. The macaques were inoculated with soluble Env trimers in AbISCO, with or without the addition of CpG-C, using an interval similar to the Hepatitis B virus vaccine. Following a comprehensive evaluation of antigen-specific responses in multiple immune compartments, we show that the Env-specific circulating IgG, memory B cells and plasma cells displayed similar kinetics and magnitude in the presence or absence of CpG-C and that there was no apparent difference between the two groups in the elicited HIV-1 neutralizing antibody titers or antigen-specific CD4+ T cell responses. Importantly, the control of SHIV viremia was significantly improved in animals from both Env-immunized groups relative to adjuvant alone controls, demonstrating the potential of AbISCO to act as a stand-alone adjuvant for Env-based vaccines.

Scientific Publications

HIV vaccine induced sero reactivity a challenge for trial participants researchers and physicians

Voronin Y, Zinszner H, Karg C, Brooks K, Coombs R, Hural J, Holt R, Fast P, Allen M

HIV vaccine-induced sero-reactivity: a challenge for trial participants, researchers, and physicians. Vaccine 2015;33(10):1243-9 doi: 10.1016/j.vaccine.2014.10.040

Abstract

Antibody-inducing vaccines are a major focus in the preventive HIV vaccine field. Because the most common tests for HIV infection rely on detecting antibodies to HIV, they may also detect antibodies induced by a candidate HIV vaccine. The detection of vaccine-induced antibodies to HIV by serological tests is most commonly referred to as vaccine-induced sero-reactivity (VISR). VISR can be misinterpreted as a sign of HIV infection in a healthy study participant. In a participant who has developed vaccine-induced antibodies, accurate diagnosis of HIV infection (or lack thereof) may require specialized tests and algorithms (differential testing) that are usually not available in community settings. Organizations sponsoring clinical testing of preventive HIV vaccine candidates have an ethical obligation not only to inform healthy volunteers about the potential problems associated with participating in a clinical trial but also to help manage any resulting issues. This article explores the scope of VISR-related issues that become increasingly prevalent as the search for an effective HIV vaccine continues and will be paramount once a preventive vaccine is deployed. We also describe ways in which organizations conducting HIV vaccine trials have addressed these issues and outline areas where more work is needed.

Scientific Publications

Development of a duplex real time RT qPCR assay to monitor genome replication gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag

Coleman JW, Wright KJ, Wallace OL, Sharma P, Arendt H, Martinez J, DeStefano J, Zamb TP, Zhang X, Parks CL

Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag. J. Virol. Methods 2015;213:26-37 doi: 10.1016/j.jviromet.2014.11.015

Abstract

Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert.