Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

SIV antigen specific effects on immune responses induced by vaccination with DNA electroporation and plasmid IL 12

Lindsay RW, Ouellette I, Arendt HE, Martinez J, DeStefano J, Lopez M, Pavlakis GN, Chiuchiolo MJ, Parks CL, King CR

SIV antigen-specific effects on immune responses induced by vaccination with DNA electroporation and plasmid IL-12. Vaccine 2013;31(42):4749-58 doi: 10.1016/j.vaccine.2013.08.011

Abstract

Molecular adjuvants are important for augmenting or modulating immune responses induced by DNA vaccination. Promising results have been obtained using IL-12 expression plasmids in a variety of disease models including the SIV model of HIV infection. We used a mouse model to evaluate plasmid IL-12 (pIL-12) in a DNA prime, recombinant adenovirus serotype 5 (rAd5) boost regimen specifically to evaluate the effect of IL-12 expression on cellular and humoral immunity induced against both SIVmac239 Gag and Env antigens. Priming with electroporated (EP) DNA+pIL-12 resulted in a 2-4-fold enhanced frequency of Gag-specific CD4 T cells which was maintained through the end of the study irrespective of the pIL-12 dose, while memory Env-specific CD4+T cells were maintained only at the low dose of pIL-12. There was little positive effect of pIL-12 on the humoral response to Env, and in fact, high dose pIL-12 dramatically reduced SIV Env-specific IgG. Additionally, both doses of pIL-12 diminished the frequency of CD8 T-cells after DNA prime, although a rAd5 boost recovered CD8 responses regardless of the pIL-12 dose. In this prime-boost regimen, we have shown that a high dose pIL-12 can systemically reduce Env-specific humoral responses and CD4T cell frequency, but not Gag-specific CD4+ T cells. These data indicate that it is important to independently characterize individual SIV or HIV antigen immunogenicity in multi-antigenic vaccines as a function of adjuvant dose.

Scientific Publications

Safety adherence and acceptability of intermittent tenofovir emtricitabine as HIV pre exposure prophylaxis PrEP among HIV uninfected Ugandan volunteers living in HIV serodiscordant relationships a randomized clinical trial

Kibengo FM, Ruzagira E, Katende D, Bwanika AN, Bahemuka U, Haberer JE, Bangsberg DR, Barin B, Rooney JF, Mark D, Chetty P, Fast P, Kamali A, Priddy FH

Safety, adherence and acceptability of intermittent tenofovir/emtricitabine as HIV pre-exposure prophylaxis (PrEP) among HIV-uninfected Ugandan volunteers living in HIV-serodiscordant relationships: a randomized, clinical trial. PLoS ONE 2013;8(9):e74314 doi: 10.1371/journal.pone.0074314

Abstract

Efficacy of oral pre-exposure prophylaxis (PrEP) in prevention of HIV acquisition has been evaluated using a daily regimen. However, adherence to long term daily medication is rarely perfect. Intermittent regimen may be a feasible alternative. Preclinical studies have demonstrated effectiveness of intermittent PrEP in SHIV prevention among animals. However, little is known about intermittent PrEP regimens.

Scientific Publications

A randomised placebo controlled first in human study of a novel clade C therapeutic peptide vaccine administered ex vivo to autologous white blood cells in HIV infected individuals

Jackson A, Kløverpris HN, Boffito M, Handley A, Atkins M, Hayes P, Gilmour J, Riddel L, Chen F, Bailey-Tippets M, Walker B, Ackland J, Sullivan M, Goulder P

A randomised, placebo-controlled, first-in-human study of a novel clade C therapeutic peptide vaccine administered ex vivo to autologous white blood cells in HIV infected individuals. PLoS ONE 2013;8(9):e73765 doi: 10.1371/journal.pone.0073765

Abstract

Preclinical studies of overlapping 15mer peptides, spanning SIV, SHIV or HIV, pulsed on autologous PBMC ex vivo have demonstrated high level, virus-specific T cell responses and viral suppression in non-human primates (NHP). Opal-HIV-Gag(c) consists of 120 synthetic 15mer peptides spanning Clade C, consensus Gag, manufactured to current good manufacturing practice; having been evaluated in a good laboratory practice toxicology study in Macaca mulatta. We evaluated the safety and preliminary immunogenicity of such peptides administered intravenously after short-duration ex vivo incubation, to HIV-positive adults on suppressive antiretroviral therapy.

Scientific Publications

Immune tolerance negatively regulates B cells in knock in mice expressing broadly neutralizing HIV antibody 4E10

Doyle-Cooper C, Hudson KE, Cooper AB, Ota T, Skog P, Dawson PE, Zwick MB, Schief WR, Burton DR, Nemazee D

Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10. J. Immunol. 2013;191(6):3186-3191 doi: 10.4049/jimmunol.1301285

Abstract

A major goal of HIV research is to develop vaccines reproducibly eliciting broadly neutralizing Abs (bNAbs); however, this has proved to be challenging. One suggested explanation for this difficulty is that epitopes seen by bNAbs mimic self, leading to immune tolerance. We generated knock-in mice expressing bNAb 4E10, which recognizes the membrane proximal external region of gp41. Unlike b12 knock-in mice, described in the companion article (Ota et al. 2013. J. Immunol. 191: 3179-3185), 4E10HL mice were found to undergo profound negative selection of B cells, indicating that 4E10 is, to a physiologically significant extent, autoreactive. Negative selection occurred by various mechanisms, including receptor editing, clonal deletion, and receptor downregulation. Despite significant deletion, small amounts of IgM and IgG anti-gp41 were found in the sera of 4E10HL mice. On a Rag1⁻/⁻ background, 4E10HL mice had virtually no serum Ig of any kind. These results are consistent with a model in which B cells with 4E10 specificity are counterselected, raising the question of how 4E10 was generated in the patient from whom it was isolated. This represents the second example of a membrane proximal external region-directed bNAb that is apparently autoreactive in a physiological setting. The relative conservation in HIV of the 4E10 epitope might reflect the fact that it is under less intense immunological selection as a result of B cell self-tolerance. The safety and desirability of targeting this epitope by a vaccine is discussed in light of the newly described bNAb 10E8.

Scientific Publications

B cells from knock in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates

Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M, Le K, Schief WR, Wyatt RT, Burton DR, Nemazee D

B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. J. Immunol. 2013;191(6):3179-85 doi: 10.4049/jimmunol.1301283

Abstract

Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ('knock-in') mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.

Scientific Publications

Immune focusing and enhanced neutralization induced by HIV 1 gp140 chemical cross linking

Schiffner T, Kong L, Duncan CJ, Back JW, Benschop JJ, Shen X, Huang PS, Stewart-Jones GB, DeStefano J, Seaman MS, Tomaras GD, Montefiori DC, Schief WR, Sattentau QJ

Immune focusing and enhanced neutralization induced by HIV-1 gp140 chemical cross-linking. J. Virol. 2013;87(18):10163-72 doi: 10.1128/JVI.01161-13

Abstract

Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.

Scientific Publications

Influences on trimerization and aggregation of soluble cleaved HIV 1 SOSIP envelope glycoprotein

Klasse PJ, Depetris RS, Pejchal R, Julien JP, Khayat R, Lee JH, Marozsan AJ, Cupo A, Cocco N, Korzun J, Yasmeen A, Ward AB, Wilson IA, Sanders RW, Moore JP

Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J. Virol. 2013;87(17):9873-85 doi: 10.1128/JVI.01226-13

Abstract

We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.

Scientific Publications

Development of replication competent viral vectors for HIV vaccine delivery

Parks CL, Picker LJ, King CR

Development of replication-competent viral vectors for HIV vaccine delivery. Curr Opin HIV AIDS 2013;8(5):402-11 doi: 10.1097/COH.0b013e328363d389

Abstract

To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials.

Scientific Publications

A next generation cleaved soluble HIV 1 Env trimer BG505 SOSIP 664 gp140 expresses multiple epitopes for broadly neutralizing but not non neutralizing antibodies

Sanders RW, Derking R, Cupo A, Julien JP, Yasmeen A, de Val N, Kim HJ, Blattner C, de la Peña AT, Korzun J, Golabek M, de Los Reyes K, Ketas TJ, van Gils MJ, King CR, Wilson IA, Ward AB, Klasse PJ, Moore JP

A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 2013;9(9):e1003618 doi: 10.1371/journal.ppat.1003618

Abstract

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.

Scientific Publications

A human antibody to the CD4 binding site of gp120 capable of highly potent but sporadic cross clade neutralization of primary HIV 1

Gach JS, Quendler H, Tong T, Narayan KM, Du SX, Whalen RG, Binley JM, Forthal DN, Poignard P, Zwick MB

A human antibody to the CD4 binding site of gp120 capable of highly potent but sporadic cross clade neutralization of primary HIV-1. PLoS ONE 2013;8(8):e72054 doi: 10.1371/journal.pone.0072054

Abstract

Primary isolates of HIV-1 resist neutralization by most antibodies to the CD4 binding site (CD4bs) on gp120 due to occlusion of this site on the trimeric spike. We describe 1F7, a human CD4bs monoclonal antibody that was found to be exceptionally potent against the HIV-1 primary isolate JR-FL. However, 1F7 failed to neutralize a patient-matched primary isolate, JR-CSF even though the two isolates differ by <10% in gp120 at the protein level. In an HIV-1 cross clade panel (n = 157), 1F7 exhibited moderate breadth, but occasionally achieved considerable potency. In binding experiments using monomeric gp120s of select resistant isolates and domain-swap chimeras between JR-FL and JR-CSF, recognition by 1F7 was limited by sequence polymorphisms involving at least the C2 region of Env. Putative N-linked glycosylation site (PNGS) mutations, notably at position 197, allowed 1F7 to neutralize JR-CSF potently without improving binding to the cognate, monomeric gp120. In contrast, flow cytometry experiments using the same PNGS mutants revealed that 1F7 binding is enhanced on cognate trimeric Env. BN-PAGE mobility shift experiments revealed that 1F7 is sensitive to the diagnostic mutation D368R in the CD4 binding loop of gp120. Our data on 1F7 reinforce how exquisitely targeted CD4bs antibodies must be to achieve cross neutralization of two closely related primary isolates. High-resolution analyses of trimeric Env that show the orientation of glycans and polymorphic elements of the CD4bs that affect binding to antibodies like 1F7 are desirable to understand how to promote immunogenicity of more conserved elements of the CD4bs.

Scientific Publications

Evaluation of an empiric risk screening score to identify acute and early HIV 1 infection among MSM in Coastal Kenya

Wahome E, Fegan G, Okuku HS, Mugo P, Price MA, Mwashigadi G, Thiong'o A, Graham SM, Sanders EJ

Evaluation of an empiric risk screening score to identify acute and early HIV-1 infection among MSM in Coastal Kenya. AIDS 2013;27(13):2163-6 doi: 10.1097/QAD.0b013e3283629095

Abstract

We evaluated the University of North Carolina-Malawi Risk Screening Score (UMRSS) for detection of acute and early HIV-1 infection (AEHI) in a cohort of Kenyan MSM with approximately 8% annual HIV-1 incidence. Three components of the UMRSS (fever, diarrhea, and discordant rapid HIV tests) were also independent predictors of AEHI in our cohort. The predictive ability (area under the receiver operating characteristic curve, AUC) of the UMRSS was 0.79. A cohort-derived risk score consisting of six characteristics (fever, diarrhea, discordant rapid HIV tests, fatigue, age <30 years, and symptomatic sexually transmitted disease) had a higher AUC of 0.85. Screening for AEHI will have substantial transmission prevention benefits.

Scientific Publications

Multidonor analysis reveals structural elements genetic determinants and maturation pathway for HIV 1 neutralization by VRC01 class antibodies

Zhou T, Zhu J, Wu X, Moquin S, Zhang B, Acharya P, Georgiev IS, Altae-Tran HR, Chuang GY, Joyce MG, Kwon YD, Longo NS, Louder MK, Luongo T, McKee K, Schramm CA, Skinner J, Yang Y, Yang Z, Zhang Z, Zheng A, Bonsignori M, Haynes BF, Scheid JF, Nussenzweig MC, Simek M, Burton DR, Koff WC, Mullikin JC, Connors M, Shapiro L, Nabel GJ, Mascola JR, Kwong PD

Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 2013;39(2):245-58 doi: 10.1016/j.immuni.2013.04.012

Abstract

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.

Scientific Publications

Synthetic glycopeptides reveal the glycan specificity of HIV neutralizing antibodies

Amin MN, McLellan JS, Huang W, Orwenyo J, Burton DR, Koff WC, Kwong PD, Wang LX

Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies. Nat. Chem. Biol. 2013;9(8):521-6 doi: 10.1038/nchembio.1288

Abstract

A new class of glycan-reactive HIV-neutralizing antibodies, including PG9 and PG16, has been recently discovered that seem to recognize previously uncharacterized glycopeptide epitopes on HIV-1 gp120. However, further characterization and reconstitution of the precise neutralizing epitopes are complicated by the heterogeneity of glycosylation. We report here the design, synthesis and antigenic evaluation of new cyclic V1V2 glycopeptides carrying defined N-linked glycans at the conserved glycosylation sites (Asn160 and Asn156 or Asn173) derived from gp120 of two HIV-1 isolates. Antibody binding studies confirmed the necessity of a Man₅GlcNAc₂ glycan at Asn160 for recognition by PG9 and PG16 and further revealed a critical role of a sialylated N-glycan at the secondary site (Asn156 or Asn173) in the context of glycopeptides for antibody binding. In addition to defining the glycan specificities of PG9 and PG16, the identified synthetic glycopeptides provide a valuable template for HIV-1 vaccine design.