Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Selective expansion of HIV 1 envelope glycoprotein specific B cell subsets recognizing distinct structural elements following immunization

Dosenovic P, Chakrabarti B, Soldemo M, Douagi I, Forsell MN, Li Y, Phogat A, Paulie S, Hoxie J, Wyatt RT, Karlsson Hedestam GB

Selective expansion of HIV-1 envelope glycoprotein-specific B cell subsets recognizing distinct structural elements following immunization. J. Immunol. 2009;183(5):3373-82 doi: 10.4049/jimmunol.0900407

Abstract

The HIV-1 envelope glycoprotein (Env) functional spike has evolved multiple immune evasion strategies, and only a few broadly neutralizing determinants on the assembled spike are accessible to Abs. Serological studies, based upon Ab binding and neutralization activity in vitro, suggest that vaccination with current Env-based immunogens predominantly elicits Abs that bind nonneutralizing or strain-restricted neutralizing epitopes. However, the fractional specificities of the polyclonal mixture of Abs present in serum, especially those directed to conformational Env epitopes, are often difficult to determine. Furthermore, serological analyses do not provide information regarding how repeated Ag inoculation impacts the expansion and maintenance of Env-specific B cell subpopulations. Therefore, we developed a highly sensitive Env-specific B cell ELISPOT system, which allows the enumeration of Ab-secreting cells (ASC) from diverse anatomical compartments directed against different structural determinants of Env. In this study, we use this system to examine the evolution of B cell responses in mice immunized with engineered Env trimers in adjuvant. We demonstrate that the relative proportion of ASC specific for defined structural elements of Env is altered significantly by homologous booster immunizations. This results in the selective expansion of ASC directed against the variable regions of Env. We suggest that the B cell specificity and compartment analysis described in this study are important complements to serological mapping studies for the examination of B cell responses against subspecificities of a variety of immunogens.

Scientific Publications

Pregnancy rates among female participants in phase I and phase IIA AIDS vaccine clinical trials in Kenya

Jaoko WG, Ogutu H, Wakasiaka S, Malogo R, Ndambuki R, Nyange J, Omosa-Manyonyi G, Fast P, Schmidt C, Verlinde C, Smith C, Bhatt KM, Ndinya-Achola J, Anzala O

Pregnancy rates among female participants in phase I and phase IIA AIDS vaccine clinical trials in Kenya. East Afr Med J 2009;86(9):430-4

Abstract

Female participants in AIDS candidate vaccine clinical trials must agree to use effective contraception to be enrolled into the studies, and for a specified period after vaccination, since the candidate vaccines' effects on the embryo or foetus are unknown.

Scientific Publications

Heterosexual transmission of human immunodeficiency virus type 1 subtype C Macrophage tropism alternative coreceptor use and the molecular anatomy of CCR5 utilization

Isaacman-Beck J, Hermann EA, Yi Y, Ratcliffe SJ, Mulenga J, Allen S, Hunter E, Derdeyn CA, Collman RG

Heterosexual transmission of human immunodeficiency virus type 1 subtype C: Macrophage tropism, alternative coreceptor use, and the molecular anatomy of CCR5 utilization. J. Virol. 2009;83(16):8208-20 doi: 10.1128/JVI.00296-09

Abstract

Human immunodeficiency virus type 1 transmission selects for virus variants with genetic characteristics distinct from those of donor quasispecies, but the biological factors favoring their transmission or establishment in new hosts are poorly understood. We compared primary target cell tropisms and entry coreceptor utilizations of donor and recipient subtype C Envs obtained near the time of acute infection from Zambian heterosexual transmission pairs. Both donor and recipient Envs demonstrated only modest macrophage tropism, and there was no overall difference between groups in macrophage or CD4 T-cell infection efficiency. Several individual pairs showed donor/recipient differences in primary cell infection, but these were not consistent between pairs. Envs had surprisingly broad uses of GPR15, CXCR6, and APJ, but little or no use of CCR2b, CCR3, CCR8, GPR1, and CXCR4. Donors overall used GPR15 better than did recipients. However, while several individual pairs showed donor/recipient differences for GPR15 and/or other coreceptors, the direction of the differences was inconsistent, and several pairs had unique alternative coreceptor patterns that were conserved across the transmission barrier. CCR5/CCR2b chimeras revealed that recipients as a group were more sensitive than were donors to replacement of the CCR5 extracellular loops with corresponding regions of CCR2b, but significant differences in this direction were not consistent within pairs. These data show that sexual transmission does not select for enhanced macrophage tropism, nor for preferential use of any alternative coreceptor. Recipient Envs are somewhat more constrained than are donors in flexibility of CCR5 use, but this pattern is not universal for all pairs, indicating that it is not an absolute requirement.

Scientific Publications

Neutralizing antibodies generated during natural HIV 1 infection good news for an HIV 1 vaccine

Stamatatos L, Morris L, Burton DR, Mascola JR

Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat. Med. 2009;15(8):866-70 doi: 10.1038/nm.1949

Abstract

Most existing viral vaccines generate antibodies that either block initial infection or help eradicate the virus before it can cause disease. For HIV-1, obstacles to eliciting protective neutralizing antibodies (NAbs) have often seemed insurmountable. The target of HIV-specific NAbs, the viral envelope glycoprotein (Env), is highly variable in amino acid sequence and glycosylation pattern. Conserved elements of HIV-1 Env seem to be poorly immunogenic, and previous attempts to generate broadly reactive NAbs by vaccination have proven ineffective. However, recent studies show that antibodies in the sera of some HIV-1-infected individuals can neutralize diverse HIV-1 isolates. Detailed analyses of these sera provide new insights into the viral epitopes targeted by broadly reactive NAbs. The findings discussed here suggest that the natural NAb response to HIV-1 can inform future vaccine design. A concerted effort of structure-based vaccine design will help guide the development of improved antibody-based vaccines for HIV-1.

Scientific Publications

Vector mediated gene transfer engenders long lived neutralizing activity and protection against SIV infection in monkeys

Johnson PR, Schnepp BC, Zhang J, Connell MJ, Greene SM, Yuste E, Desrosiers RC, Clark KR

Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 2009;15(8):901-6 doi: 10.1038/nm.1967

Abstract

The key to an effective HIV vaccine is development of an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the simian immunodeficiency virus (SIV) model, we have taken a markedly different approach: delivery to muscle of an adeno-associated virus gene transfer vector expressing antibodies or antibody-like immunoadhesins having predetermined SIV specificity. With this approach, SIV-specific molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and have observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds considerable promise as a unique approach to an effective HIV vaccine.

Scientific Publications

Effective low titer antibody protection against low dose repeated mucosal SHIV challenge in macaques

Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK, Parren PW, Marx PA, Burton DR

Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 2009;15(8):951-4 doi: 10.1038/nm.1974

Abstract

Neutralizing antibodies are thought to be crucial for HIV vaccine protection, but studies in animal models suggest that high antibody concentrations are required. This is a major potential hurdle for vaccine design. However, these studies typically apply a large virus inoculum to ensure infection in control animals in single-challenge experiments. In contrast, most human infection via sexual encounter probably involves repeated exposures to much lower doses of virus. Therefore, animal studies may have provided an overestimate of the levels of antibodies required for protection in humans. We investigated whether plasma concentrations of antibody corresponding to relatively modest neutralization titers in vitro could protect macaques from repeated intravaginal exposure to low doses of a simian immunodeficiency virus-HIV chimera (SHIV) that uses the CC chemokine receptor 5 (CCR5) co-receptor. An effector function-deficient variant of the neutralizing antibody was also included. The results show that a substantially larger number of challenges is required to infect macaques treated with neutralizing antibody than control antibody-treated macaques, and support the notion that effector function may contribute to antibody protection. Overall, the results imply that lower amounts of antibody than previously considered protective may provide benefit in the context of typical human exposure to HIV-1.

Scientific Publications

Vaccine induced cellular responses control simian immunodeficiency virus replication after heterologous challenge

Wilson NA, Keele BF, Reed JS, Piaskowski SM, MacNair CE, Bett AJ, Liang X, Wang F, Thoryk E, Heidecker GJ, Citron MP, Huang L, Lin J, Vitelli S, Ahn CD, Kaizu M, Maness NJ, Reynolds MR, Friedrich TC, Loffredo JT, Rakasz EG, Erickson S, Allison DB, Piatak M, Lifson JD, Shiver JW, Casimiro DR, Shaw GM, Hahn BH, Watkins DI

Vaccine-induced cellular responses control simian immunodeficiency virus replication after heterologous challenge. J. Virol. 2009;83(13):6508-21 doi: 10.1128/JVI.00272-09

Abstract

All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env. Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.

Scientific Publications

Human immunodeficiency virus type 1 elite neutralizers individuals with broad and potent neutralizing activity identified by using a high throughput neutralization assay together with an analytical selection algorithm

Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, Dehovitz J, Bekker LG, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC

Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 2009;83(14):7337-48 doi: 10.1128/JVI.00110-09

Abstract

The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC(50)) neutralization titers of >or=100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC(50) titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.

Scientific Publications

An African perspective on mucosal immunity and HIV 1

Pala P, Gomez-Roman VR, Gilmour J, Kaleebu P

An African perspective on mucosal immunity and HIV-1. Mucosal Immunol 2009;2(4):300-14 doi: 10.1038/mi.2009.23

Abstract

HIV prevention mandates an understanding of the mechanisms of mucosal immunity with attention to some unique features of the epidemic and mucosal environment in the developing world. An effective vaccine will have to induce mucosal protection against a highly diverse virus, which is equipped with a number of immune evasion strategies. Its development will require assessment of mucosal immune responses, and it will have to protect a mucosal environment where inflammation and altered immune responses are common because of the presence of other mucosal infections, such as sexually transmitted infections and parasites, and where nutritional status may also be compromised. Ideally, not only prevention methods would protect adults but also provide cover against gastrointestinal transmission through maternal milk. Prevention might also be complemented by microbicides and circumcision, two alternative approaches to mucosal protection. It seems unlikely that a single solution will work in all instances and intervention might have to act at multiple levels and be tailored to local circumstances. We review here some of the mucosal events associated with HIV infection that are most relevant in an African setting.

Scientific Publications

Genetic identity biological phenotype and evolutionary pathways of transmitted founder viruses in acute and early HIV 1 infection

Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM

Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 2009;206(6):1273-89 doi: 10.1084/jem.20090378

Abstract

Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4(+) T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12-20 mo, viruses exhibited concentrated mutations at 17-34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.

Scientific Publications

Efficient recovery of high affinity antibodies from a single chain Fab yeast display library

Walker LM, Bowley DR, Burton DR

Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J. Mol. Biol. 2009;389(2):365-75 doi: 10.1016/j.jmb.2009.04.019

Abstract

Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.

Scientific Publications

HIV 1 and influenza antibodies seeing antigens in new ways

Kwong PD, Wilson IA

HIV-1 and influenza antibodies: seeing antigens in new ways. Nat. Immunol. 2009;10(6):573-8 doi: 10.1038/ni.1746

Abstract

New modes of humoral recognition have been identified by studies of antibodies that neutralize human immunodeficiency virus type 1 and influenza A viruses. Understanding how such modes of antibody-antigen recognition can occur in the context of sophisticated mechanisms of humoral evasion has implications for the development of effective vaccines. Here we describe eight modes of antibody recognition first observed with human immunodeficiency virus type 1. Similarities to four of these modes have been identified with antibodies to a conserved 'stem' epitope on influenza A viruses. We outline how each of these different modes of antibody recognition is particularly suited to overcoming a specific viral evasion tactic and assess potential routes of re-elicitation in vaccine settings.

Scientific Publications

Evaluation and recommendations on good clinical laboratory practice guidelines for phase I III clinical trials

Sarzotti-Kelsoe M, Cox J, Cleland N, Denny T, Hural J, Needham L, Ozaki D, Rodriguez-Chavez IR, Stevens G, Stiles T, Tarragona-Fiol T, Simkins A

Evaluation and recommendations on good clinical laboratory practice guidelines for phase I-III clinical trials. PLoS Med. 2009;6(5):e1000067 doi: 10.1371/journal.pmed.1000067