Filter by
-
Type
Scientific Publications
Cytomegalovirus vectors violate CD8 T cell epitope recognition paradigms
Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, Gilbride RM, Lewis MS, Gilliam AN, Ventura AB, Malouli D, Xu G, Richards R, Whizin N, Reed JS, Hammond KB, Fischer M, Turner JM, Legasse AW, Axthelm MK, Edlefsen PT, Nelson JA, Lifson JD, Früh K, Picker LJ
Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013;340(6135):1237874 doi: 10.1126/science.1237874
Abstract
CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.
Scientific Publications
Rational HIV immunogen design to target specific germline B cell receptors
Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A, Sok D, Huang PS, MacPherson S, Jones M, Nieusma T, Mathison J, Baker D, Ward AB, Burton DR, Stamatatos L, Nemazee D, Wilson IA, Schief WR
Rational HIV immunogen design to target specific germline B cell receptors. Science 2013;340(6133):711-6 doi: 10.1126/science.1234150
Abstract
Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.
Scientific Publications
Delineating antibody recognition in polyclonal sera from patterns of HIV 1 isolate neutralization
Georgiev IS, Doria-Rose NA, Zhou T, Kwon YD, Staupe RP, Moquin S, Chuang GY, Louder MK, Schmidt SD, Altae-Tran HR, Bailer RT, McKee K, Nason M, O'Dell S, Ofek G, Pancera M, Srivatsan S, Shapiro L, Connors M, Migueles SA, Morris L, Nishimura Y, Martin MA, Mascola JR, Kwong PD
Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization. Science 2013;340(6133):751-6 doi: 10.1126/science.1233989
Abstract
Serum characterization and antibody isolation are transforming our understanding of the humoral immune response to viral infection. Here, we show that epitope specificities of HIV-1-neutralizing antibodies in serum can be elucidated from the serum pattern of neutralization against a diverse panel of HIV-1 isolates. We determined 'neutralization fingerprints' for 30 neutralizing antibodies on a panel of 34 diverse HIV-1 strains and showed that similarity in neutralization fingerprint correlated with similarity in epitope. We used these fingerprints to delineate specificities of polyclonal sera from 24 HIV-1-infected donors and a chimeric siman-human immunodeficiency virus-infected macaque. Delineated specificities matched published specificities and were further confirmed by antibody isolation for two sera. Patterns of virus-isolate neutralization can thus afford a detailed epitope-specific understanding of neutralizing-antibody responses to viral infection.
Scientific Publications
Impact of long term contraceptive promotion on incident pregnancy a randomized controlled trial among HIV positive couples in Lusaka Zambia
Wall KM, Vwalika B, Haddad L, Khu NH, Vwalika C, Kilembe W, Chomba E, Stephenson R, Kleinbaum D, Nizam A, Brill I, Tichacek A, Allen S
Impact of long-term contraceptive promotion on incident pregnancy: a randomized controlled trial among HIV-positive couples in Lusaka, Zambia. J. Acquir. Immune Defic. Syndr. 2013;63(1):86-95 doi: 10.1097/QAI.0b013e31827ee19c
Abstract
To evaluate the impact of family planning promotion on incident pregnancy in a combined effort to address Prongs 1 and 2 of prevention of mother-to-child transmission of HIV.
Scientific Publications
Short communication HIV type 1 transmitted drug resistance and evidence of transmission clusters among recently infected antiretroviral naive individuals from Ugandan fishing communities of Lake Victoria
Nazziwa J, Njai HF, Ndembi N, Birungi J, Lyagoba F, Gershim A, Nakiyingi-Miiro J, Nielsen L, Mpendo J, Nanvubya A, Debont J, Grosskurth H, Kamali A, Seeley J, Kaleebu P
Short communication: HIV type 1 transmitted drug resistance and evidence of transmission clusters among recently infected antiretroviral-naive individuals from Ugandan fishing communities of Lake Victoria. AIDS Res. Hum. Retroviruses 2013;29(5):788-95 doi: 10.1089/AID.2012.0123
Abstract
Human immunodeficiency virus type 1 (HIV-1) prevalence and incidence in the fishing communities on Lake Victoria in Uganda are high. This population may play a role in driving the HIV epidemic in Uganda including the spread of transmitted drug resistance (TDR). We report data on TDR in this population among antiretroviral (ARV)-naive, recently infected individuals about 5 years after ARV scaling-up in Uganda. We identified phylogenetic transmission clusters and combined these with volunteer life histories in order to understand the sexual networks within this population. From a prospective cohort of 1,000 HIV-negative individuals recruited from five communities, 51 seroconverters were identified over a period of 2 years. From these, whole blood was collected and population sequencing of the HIV-1 pol gene (protease/reverse transcriptase) was performed from plasma. Drug resistance mutations (DRMs) were scored using the 2009 WHO list for surveillance of TDR. TDR prevalence categories were estimated using the WHO recommended truncated sampling technique for the surveillance of TDR for use in resource-limited settings (RLS). Of the samples 92% (47/51) were successfully genotyped. HIV-1 subtype frequencies were 15/47 (32%) A1, 20/47 (43%) D, 1/47 (2%) C, 1/47 (2%) G, and 10/47 (21%) unique recombinant forms. Nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutation K103N was identified in two individuals and V106A in one (6%) suggesting that the level of TDR was moderate in this population. No nucleoside/tide reverse transcriptase inhibitor (NRTI) or protease inhibitor (PI) DRMs were detected. In this study, we identified five transmission clusters supported by high bootstrap values and low genetic distances. Of these, one pair included the two individuals with K103N. Two of the genotypic clusters corresponded with reported sexual partnerships as detected through prior in-depth interviews. The level of TDR to NNRTIs in these ARV-naive individuals was moderate by WHO threshold survey categorization. The transmission clusters suggest a high degree of sexual partner mixing between members of these communities.
Scientific Publications
Adherence to antiretroviral therapy and clinical outcomes among young adults reporting high risk sexual behavior including men who have sex with men in coastal Kenya
Graham SM, Mugo P, Gichuru E, Thiong'o A, Macharia M, Okuku HS, van der Elst E, Price MA, Muraguri N, Sanders EJ
Adherence to antiretroviral therapy and clinical outcomes among young adults reporting high-risk sexual behavior, including men who have sex with men, in coastal Kenya. AIDS Behav 2013;17(4):1255-65 doi: 10.1007/s10461-013-0445-9
Abstract
African men who have sex with men (MSM) face significant stigma and barriers to care. We investigated antiretroviral therapy (ART) adherence among high-risk adults, including MSM, participating in a clinic-based cohort. Survival analysis was used to compare attrition across patient groups. Differences in adherence, weight gain, and CD4 counts after ART initiation were assessed. Among 250 HIV-1-seropositive adults, including 108 MSM, 15 heterosexual men, and 127 women, patient group was not associated with attrition. Among 58 participants who were followed on ART, 40 % of MSM had less than 95 % adherence, versus 28.6 % of heterosexual men and 11.5 % of women. Although MSM gained less weight after ART initiation than women (adjusted difference -3.5 kg/year), CD4 counts did not differ. More data are needed on barriers to adherence and clinical outcomes among African MSM, to ensure that MSM can access care and derive treatment and prevention benefits from ART.
Scientific Publications
Identification of an HIV 1 clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes
Hoffenberg S, Powell R, Carpov A, Wagner D, Wilson A, Kosakovsky Pond S, Lindsay R, Arendt H, Destefano J, Phogat S, Poignard P, Fling SP, Simek M, Labranche C, Montefiori D, Wrin T, Phung P, Burton D, Koff W, King CR, Parks CL, Caulfield MJ
Identification of an HIV-1 clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes. J. Virol. 2013;87(10):5372-83 doi: 10.1128/JVI.02827-12
doi: 10.1128/jvi.02827-12
Abstract
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector.
Scientific Publications
Accelerating the development of a safe and effective HIV vaccine HIV vaccine case study for the Decade of Vaccines
Koff WC, Russell ND, Walport M, Feinberg MB, Shiver JW, Karim SA, Walker BD, McGlynn MG, Nweneka CV, Nabel GJ
Accelerating the development of a safe and effective HIV vaccine: HIV vaccine case study for the Decade of Vaccines. Vaccine 2013;31 Suppl 2:B204-8 doi: 10.1016/j.vaccine.2012.10.115
Abstract
Human immunodeficiency virus (HIV), the etiologic agent that causes AIDS, is the fourth largest killer in the world today. Despite the remarkable achievements in development of anti-retroviral therapies against HIV, and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic. Currently, there is a renaissance in HIV vaccine development, due in large part to the first demonstration of vaccine induced protection, albeit modest, in human efficacy trials, a generation of improved vaccine candidates advancing in the clinical pipeline, and newly defined targets on HIV for broadly neutralizing antibodies. The main barriers to HIV vaccine development include the global variability of HIV, lack of a validated animal model, lack of correlates of protective immunity, lack of natural protective immune responses against HIV, and the reservoir of infected cells conferred by integration of HIV's genome into the host. Some of these barriers are not unique to HIV, but generic to other variable viral pathogens such as hepatitis C and pandemic influenza. Recommendations to overcome these barriers are presented in this document, including but not limited to expansion of efforts to design immunogens capable of eliciting broadly neutralizing antibodies against HIV, expansion of clinical research capabilities to assess multiple immunogens concurrently with comprehensive immune monitoring, increased support for translational vaccine research, and engaging industry as full partners in vaccine discovery and development.
Scientific Publications
Mining the antibodyome for HIV 1 neutralizing antibodies with next generation sequencing and phylogenetic pairing of heavy light chains
Zhu J, Ofek G, Yang Y, Zhang B, Louder MK, Lu G, McKee K, Pancera M, Skinner J, Zhang Z, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Simek M, Burton DR, Koff WC, Mullikin JC, Mascola JR, Shapiro L, Kwong PD
Mining the antibodyome for HIV-1-neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains. Proc. Natl. Acad. Sci. U.S.A. 2013;110(16):6470-5 doi: 10.1073/pnas.1219320110
Abstract
Next-generation sequencing of antibody transcripts from HIV-1-infected individuals with broadly neutralizing antibodies could provide an efficient means for identifying somatic variants and characterizing their lineages. Here, we used 454 pyrosequencing and identity/divergence grid sampling to analyze heavy- and light-chain sequences from donor N152, the source of the broadly neutralizing antibody 10E8. We identified variants with up to 28% difference in amino acid sequence. Heavy- and light-chain phylogenetic trees of identified 10E8 variants displayed similar architectures, and 10E8 variants reconstituted from matched and unmatched phylogenetic branches displayed significantly lower autoreactivity when matched. To test the generality of phylogenetic pairing, we analyzed donor International AIDS Vaccine Initiative 84, the source of antibodies PGT141-145. Heavy- and light-chain phylogenetic trees of PGT141-145 somatic variants also displayed remarkably similar architectures; in this case, branch pairings could be anchored by known PGT141-145 antibodies. Altogether, our findings suggest that phylogenetic matching of heavy and light chains can provide a means to approximate natural pairings.
Scientific Publications
Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti CD4 binding site antibodies
McGuire AT, Hoot S, Dreyer AM, Lippy A, Stuart A, Cohen KW, Jardine J, Menis S, Scheid JF, West AP, Schief WR, Stamatatos L
Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J. Exp. Med. 2013;210(4):655-63 doi: 10.1084/jem.20122824
doi: 10.1084/jem.20122824
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti-CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.
Scientific Publications
Design of an Escherichia coli expressed HIV 1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies
Bhattacharyya S, Singh P, Rathore U, Purwar M, Wagner D, Arendt H, DeStefano J, LaBranche CC, Montefiori DC, Phogat S, Varadarajan R
Design of an Escherichia coli expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies. J. Biol. Chem. 2013;288(14):9815-25 doi: 10.1074/jbc.M112.425959
Abstract
b12, one of the few broadly neutralizing antibodies against HIV-1, binds to the CD4 binding site (CD4bs) on the gp120 subunit of HIV-1 Env. Two small fragments of HIV-1 gp120, b121a and b122a, which display about 70% of the b12 epitope and include solubility-enhancing mutations, were designed. Bacterially expressed b121a/b122a were partially folded and could bind b12 but not the CD4bs-directed non-neutralizing antibody b6. Sera from rabbits primed with b121a or b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity in a TZM-bl assay against a 16-virus panel that included nine Tier 2 and 3 viruses as well as in a five-virus panel previously designed to screen for broad neutralization. Using a mean IC50 cut-off of 50, sera from control rabbits immunized with gp120 alone neutralized only one virus of the 14 non-Tier 1 viruses tested (7%), whereas sera from b121a- and b122a-immunized rabbits neutralized seven (50%) and twelve (86%) viruses, respectively. Serum depletion studies confirmed that neutralization was gp120-directed and that sera from animals immunized with gp120 contained lower amounts of CD4bs-directed antibodies than corresponding sera from animals immunized with b121a/b122a. Competition binding assays with b12 also showed that b121a/2a sera contained significantly higher amounts of antibodies directed toward the CD4 binding site than the gp120 sera. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals.
Scientific Publications
HLA B 57 versus HLA B 81 in HIV 1 infection slow and steady wins the race
Prentice HA, Porter TR, Price MA, Cormier E, He D, Farmer PK, Kamali A, Karita E, Lakhi S, Sanders EJ, Anzala O, Amornkul PN, Allen S, Hunter E, Kaslow RA, Gilmour J, Tang J
HLA-B*57 versus HLA-B*81 in HIV-1 infection: slow and steady wins the race? J. Virol. 2013;87(7):4043-51 doi: 10.1128/JVI.03302-12
doi: 10.1128/jvi.03302-12
Abstract
Two human leukocyte antigen (HLA) variants, HLA-B*57 and -B*81, are consistently known as favorable host factors in human immunodeficiency virus type 1 (HIV-1)-infected Africans and African-Americans. In our analyses of prospective data from 538 recent HIV-1 seroconverters and cross-sectional data from 292 subjects with unknown duration of infection, HLA-B*57 (mostly B*57:03) and -B*81 (exclusively B*81:01) had mostly discordant associations with virologic and immunologic manifestations before antiretroviral therapy. Specifically, relatively low viral load (VL) in HLA-B*57-positive subjects (P ≤ 0.03 in various models) did not translate to early advantage in CD4(+) T-cell (CD4) counts (P ≥ 0.37). In contrast, individuals with HLA-B*81 showed little deviation from the normal set point VL (P > 0.18) while maintaining high CD4 count during early and chronic infection (P = 0.01). These observations suggest that discordance between VL and CD4 count can occur in the presence of certain HLA alleles and that effective control of HIV-1 viremia is not always a prerequisite for favorable prognosis (delayed immunodeficiency). Of note, steady CD4 count associated with HLA-B*81 in HIV-1-infected Africans may depend on the country of origin, as observations differed slightly between subgroups enrolled in southern Africa (Zambia) and eastern Africa (Kenya, Rwanda, and Uganda).
Scientific Publications
Asymmetric recognition of the HIV 1 trimer by broadly neutralizing antibody PG9
Julien JP, Lee JH, Cupo A, Murin CD, Derking R, Hoffenberg S, Caulfield MJ, King CR, Marozsan AJ, Klasse PJ, Sanders RW, Moore JP, Wilson IA, Ward AB
Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc. Natl. Acad. Sci. U.S.A. 2013;110(11):4351-6 doi: 10.1073/pnas.1217537110
Abstract
PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex. The BG505 SOSIP.664 gp140 trimer is remarkably stable as assessed by electron microscopy (EM) and differential scanning calorimetry. EM, small angle X-ray scattering, size exclusion chromatography with inline multiangle light scattering and isothermal titration calorimetry all indicate that only a single PG9 fragment antigen-binding (Fab) binds to the Env trimer. An ∼18 Å EM reconstruction demonstrates that PG9 recognizes the trimer asymmetrically at its apex via contact with two of the three gp120 protomers, possibly contributing to its reported preference for a quaternary epitope. Molecular modeling and isothermal titration calorimetry binding experiments with an engineered PG9 mutant suggest that, in addition to the N156 and N160 glycan interactions observed in crystal structures of PG9 with a scaffolded V1/V2 domain, PG9 makes secondary interactions with an N160 glycan from an adjacent gp120 protomer in the antibody-trimer complex. Together, these structural and biophysical findings should facilitate the design of HIV-1 immunogens that possess all elements of the quaternary PG9 epitope required to induce broadly neutralizing antibodies against this region.