Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Minimally Mutated HIV 1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design

Jardine JG, Sok D, Julien JP, Briney B, Sarkar A, Liang CH, Scherer EA, Henry Dunand CJ, Adachi Y, Diwanji D, Hsueh J, Jones M, Kalyuzhniy O, Kubitz M, Spencer S, Pauthner M, Saye-Francisco KL, Sesterhenn F, Wilson PC, Galloway DM, Stanfield RL, Wilson IA, Burton DR, Schief WR

Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathog. 2016;12(8):e1005815 doi: 10.1371/journal.ppat.1005815

Abstract

An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.

Scientific Publications

Promotion of couples voluntary HIV counseling and testing a comparison of influence networks in Rwanda and Zambia

Kelley AL, Hagaman AK, Wall KM, Karita E, Kilembe W, Bayingana R, Tichacek A, Kautzman M, Allen SA

Promotion of couples’ voluntary HIV counseling and testing: a comparison of influence networks in Rwanda and Zambia. BMC Public Health 2016;16:744 doi: 10.1186/s12889-016-3424-z

Abstract

Many African adults do not know that partners in steady or cohabiting relationships can have different HIV test results. Despite WHO recommendations for couples' voluntary counseling and testing (CVCT), fewer than 10 % of couples have been jointly tested and counseled. We examine the roles and interactions of influential network leaders (INLs) and influential network agents (INAs) in promoting CVCT in Kigali, Rwanda and Lusaka, Zambia.

Scientific Publications

Thermostability of Well Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies

Feng Y, Tran K, Bale S, Kumar S, Guenaga J, Wilson R, de Val N, Arendt H, DeStefano J, Ward AB, Wyatt RT

Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathog. 2016;12(8):e1005767 doi: 10.1371/journal.ppat.1005767

Abstract

In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were 'stress-tested' at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design.

Scientific Publications

A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans

Sok D, Pauthner M, Briney B, Lee JH, Saye-Francisco KL, Hsueh J, Ramos A, Le KM, Jones M, Jardine JG, Bastidas R, Sarkar A, Liang CH, Shivatare SS, Wu CY, Schief WR, Wong CH, Wilson IA, Ward AB, Zhu J, Poignard P, Burton DR

A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity 2016;45(1):31-45 doi: 10.1016/j.immuni.2016.06.026

Abstract

The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env.

Scientific Publications

Adenovirus based HIV 1 vaccine candidates tested in efficacy trials elicit CD8 T cells with limited breadth of HIV 1 inhibition

Hayes PJ, Cox JH, Coleman AR, Fernandez N, Bergin PJ, Kopycinski JT, Nitayaphan S, Pitisuttihum P, de Souza M, Duerr A, Morgan C, Gilmour JW

Adenovirus-based HIV-1 vaccine candidates tested in efficacy trials elicit CD8+ T cells with limited breadth of HIV-1 inhibition. AIDS 2016;30(11):1703-12 doi: 10.1097/QAD.0000000000001122

Abstract

The ability of HIV-1 vaccine candidates MRKAd5, VRC DNA/Ad5 and ALVAC/AIDSVAX to elicit CD8 T cells with direct antiviral function was assessed and compared with HIV-1-infected volunteers.

Scientific Publications

Effect of Schistosoma mansoni Infection on Innate and HIV 1 Specific T Cell Immune Responses in HIV 1 Infected Ugandan Fisher Folk

Obuku AE, Asiki G, Abaasa A, Ssonko I, Harari A, van Dam GJ, Corstjens PL, Joloba M, Ding S, Mpendo J, Nielsen L, Kamali A, Elliott AM, Pantaleo G, Kaleebu P, Pala P

Effect of Schistosoma mansoni Infection on Innate and HIV-1-Specific T-Cell Immune Responses in HIV-1-Infected Ugandan Fisher Folk. AIDS Res. Hum. Retroviruses 2016;32(7):668-75 doi: 10.1089/AID.2015.0274

Abstract

In Uganda, fisher folk have HIV prevalence rates, about four times higher than the national average, and are often coinfected with Schistosoma mansoni. We hypothesized that innate immune responses and HIV-specific Th1 immune responses might be downmodulated in HIV/S. mansoni-coinfected individuals compared with HIV+/S. mansoni-negative individuals. We stimulated whole blood with innate receptor agonists and analyzed supernatant cytokines by Luminex. We evaluated HIV-specific responses by intracellular cytokine staining for IFN-γ, IL-2, and TNF-α. We found that the plasma viral load and CD4 count were similar between the HIV+SM+ and HIV+SM- individuals. In addition, the TNF-α response to the imidazoquinoline compound CL097 and β-1, 3-glucan (curdlan), was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. The frequency of HIV-specific IFN-γ+IL-2-TNF-α- CD8 T cells and IFN-γ+IL-2-TNF-α+ CD4 T cells was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. These findings do not support the hypothesis that S. mansoni downmodulates innate or HIV-specific Th1 responses in HIV/S. mansoni-coinfected individuals.

Scientific Publications

Uncleaved prefusion optimized gp140 trimers derived from analysis of HIV 1 envelope metastability

Kong L, He L, de Val N, Vora N, Morris CD, Azadnia P, Sok D, Zhou B, Burton DR, Ward AB, Wilson IA, Zhu J

Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nat Commun 2016;7:12040 doi: 10.1038/ncomms12040

Abstract

The trimeric HIV-1 envelope glycoprotein (Env) is critical for host immune recognition and neutralization. Despite advances in trimer design, the roots of Env trimer metastability remain elusive. Here we investigate the contribution of two Env regions to metastability. First, we computationally redesign a largely disordered bend in heptad region 1 (HR1) of SOSIP trimers that connects the long, central HR1 helix to the fusion peptide, substantially improving the yield of soluble, well-folded trimers. Structural and antigenic analyses of two distinct HR1 redesigns confirm that redesigned Env closely mimics the native, prefusion trimer with a more stable gp41. Next, we replace the cleavage site between gp120 and gp41 with various linkers in the context of an HR1 redesign. Electron microscopy reveals a potential fusion intermediate state for uncleaved trimers containing short but not long linkers. Together, these results outline a general approach for stabilization of Env trimers from diverse HIV-1 strains.

Scientific Publications

Presenting native like trimeric HIV 1 antigens with self assembling nanoparticles

He L, de Val N, Morris CD, Vora N, Thinnes TC, Kong L, Azadnia P, Sok D, Zhou B, Burton DR, Wilson IA, Nemazee D, Ward AB, Zhu J

Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nat Commun 2016;7:12041 doi: 10.1038/ncomms12041

Abstract

Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development.

Scientific Publications

Neutralizing antibody affords comparable protection against vaginal and rectal simian human immunodeficiency virus challenge in macaques

Moldt B, Le KM, Carnathan DG, Whitney JB, Schultz N, Lewis MG, Borducchi EN, Smith KM, Mackel JJ, Sweat SL, Hodges AP, Godzik A, Parren PW, Silvestri G, Barouch DH, Burton DR

Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. AIDS 2016;30(10):1543-51 doi: 10.1097/QAD.0000000000001102

Abstract

Passive administration of broadly neutralizing antibodies has been shown to protect against both vaginal and rectal challenge in the simian/human immunodeficiency virus (SHIV)/macaque model of HIV transmission. However, the relative efficacy of antibody against the two modes of exposure is unknown and, given differences in the composition and immunology of the two tissue compartments, this is an important gap in knowledge. To investigate the significance of the challenge route for antibody-mediated protection, we performed a comparative protection study in macaques using the highly potent human monoclonal antibody, PGT126.

Scientific Publications

Association of mutations in V3 C3 domain with enhanced sensitivity of HIV 1 clade C primary envelopes to autologous broadly neutralizing plasma antibodies

Deshpande S, Patil S, Kumar R, Shrivastava T, Srikrishnan AK, Murugavel KG, Koff WC, Chakrabarti BK, Bhattacharya J

Association of mutations in V3/C3 domain with enhanced sensitivity of HIV-1 clade C primary envelopes to autologous broadly neutralizing plasma antibodies. Retrovirology 2016;13(1):41 doi: 10.1186/s12977-016-0273-x

Abstract

Broadly neutralizing antibodies to HIV-1 elicited in infected individuals evolves through shifts in their molecular specificities to viral envelope (Env) in the disease course. Recently, we showed that resistance of circulating HIV-1 clade C to the autologous plasma obtained from one Indian elite neutralizer is associated with mutations in V1 loop. In the present study, we examined the genetic attributes associated with exceptional sensitivity of pseudoviruses expressing an env gene obtained from the follow up visit contemporaneous plasma of the same donor.

Scientific Publications

Status of vaccine research and development of vaccines for HIV 1

Safrit JT, Fast PE, Gieber L, Kuipers H, Dean HJ, Koff WC

Status of vaccine research and development of vaccines for HIV-1. Vaccine 2016;34(26):2921-2925 doi: S0264-410X(16)00280-2

Abstract

Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored.

Scientific Publications

Oral Typhoid Vaccination With Live Attenuated Salmonella Typhi Strain Ty21a Generates Ty21a Responsive and Heterologous Influenza Virus Responsive CD4 and CD8 T Cells at the Human Intestinal Mucosa

Pennington SH, Thompson AL, Wright AK, Ferreira DM, Jambo KC, Wright AD, Faragher B, Gilmour JW, Gordon SB, Gordon MA

Oral Typhoid Vaccination With Live-Attenuated Salmonella Typhi Strain Ty21a Generates Ty21a-Responsive and Heterologous Influenza Virus-Responsive CD4+ and CD8+ T Cells at the Human Intestinal Mucosa. J. Infect. Dis. 2016;213(11):1809-19 doi: 10.1093/infdis/jiw030

Abstract

Oral vaccination with live-attenuated Salmonella Typhi strain Ty21a is modestly efficacious, but the mechanisms of protection are currently unknown. While humoral and cellular immune responses are well described in peripheral blood, the cellular response at the intestinal mucosa has never been directly assessed.

Scientific Publications

Impact of pre adapted HIV transmission

Carlson JM, Du VY, Pfeifer N, Bansal A, Tan VY, Power K, Brumme CJ, Kreimer A, DeZiel CE, Fusi N, Schaefer M, Brockman MA, Gilmour J, Price MA, Kilembe W, Haubrich R, John M, Mallal S, Shapiro R, Frater J, Harrigan PR, Ndung'u T, Allen S, Heckerman D, Sidney J, Allen TM, Goulder PJ, Brumme ZL, Hunter E, Goepfert PA

Impact of pre-adapted HIV transmission. Nat. Med. 2016;22(6):606-13 doi: 10.1038/nm.4100

Abstract

Human leukocyte antigen class I (HLA)-restricted CD8(+) T lymphocyte (CTL) responses are crucial to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, as these variants can also reduce intrinsic viral fitness. To address this, we here developed a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses that are pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4(+) T cell decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to the expression of certain HLA alleles. Thus, viral pre-adaptation exploits 'holes' in the immune response. Accounting for these holes may be key for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies that require broad CTL responses to achieve successful eradication of HIV reservoirs.