Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc tagged gp120

Binley JM, Ngo-Abdalla S, Moore P, Bobardt M, Chatterji U, Gallay P, Burton DR, Wilson IA, Elder JH, de Parseval A

Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120. Retrovirology 2006;3:39

Abstract

During natural HIV infection, an array of host receptors are thought to influence virus attachment and the kinetics of infection. In this study, to probe the interactions of HIV envelope (Env) with various receptors, we assessed the inhibitory properties of various anti-Env monoclonal antibodies (mAbs) in binding assays. To assist in detecting Env in attachment assays, we generated Fc fusions of full-length wild-type gp120 and several variable loop-deleted gp120s. Through investigation of the inhibition of Env binding to cell lines expressing CD4, CCR5, DC-SIGN, syndecans or combinations thereof, we found that the broadly neutralizing mAb, 2G12, directed to a unique carbohydrate epitope of gp120, inhibited Env-CCR5 binding, partially inhibited Env-DC-SIGN binding, but had no effect on Env-syndecan association. Furthermore, 2G12 inhibited Env attachment to primary monocyte-derived dendritic cells, that expressed CD4 and CCR5 primary HIV receptors, as well as DC-SIGN, and suggested that the dual activities of 2G12 could be valuable in vivo for inhibiting initial virus dissemination and propagation.

Scientific Publications

Recent trends in clinical trials of vaccines to prevent HIV AIDS

Fast PE

Recent trends in clinical trials of vaccines to prevent HIV/AIDS. Curr Opin HIV AIDS 2006;1(4):267-71 doi: 10.1097/01.COH.0000232340.77790.7a

Abstract

The aim of this article is to describe progress in research and development of vaccines to prevent HIV/AIDS, emphasizing clinical trials and human studies published during the past year.

Scientific Publications

Polyvalent HIV 1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A B C D and E

Wang S, Pal R, Mascola JR, Chou TH, Mboudjeka I, Shen S, Liu Q, Whitney S, Keen T, Nair BC, Kalyanaraman VS, Markham P, Lu S

Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 2006;350(1):34-47

Abstract

A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.

Scientific Publications

Induction of multifunctional human immunodeficiency virus type 1 HIV 1 specific T cells capable of proliferation in healthy subjects by using a prime boost regimen of DNA and modified vaccinia virus Ankara vectored vaccines expressing HIV 1 Gag coupled to CD8 T cell epitopes

Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, Roberts J, Guimaraes-Walker A, Hayes P, Loughran K, Smith C, De Bont J, Verlinde C, Vooijs D, Schmidt C, Boaz M, Gilmour J, Fast P, Dorrell L, Hanke T, McMichael AJ

Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J. Virol. 2006;80(10):4717-28

Abstract

A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees.

Scientific Publications

AIDS vaccine efficacy trials expand capacity and prioritize Throughout Africa Asia and Latin America state of the art clinics and laboratories exist where 4 years ago there were none

Excler JL

AIDS vaccine efficacy trials: expand capacity and prioritize. ‘Throughout Africa, Asia and Latin America state-of-the-art clinics and laboratories…exist where, 4 years ago, there were none’. Expert Rev Vaccines 2006;5(2):167-70

Scientific Publications

How do viral and host factors modulate the sexual transmission of HIV Can transmission be blocked

Gupta K, Klasse PJ

How do viral and host factors modulate the sexual transmission of HIV? Can transmission be blocked? PLoS Med. 2006;3(2):e79

Scientific Publications

Phase I clinical trial safety of DNA and modified virus Ankara vectored human immunodeficiency virus type 1 HIV 1 vaccines administered alone and in a prime boost regime to healthy HIV 1 uninfected volunteers

Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, Schmidt C, Smith C, Brooks M, Roberts JE, Darwin SC, Fast PE, Conlon C, Rowland-Jones S, McMichael AJ, Hanke T

Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine 2006;24(4):417-25

Abstract

DNA- and modified virus Ankara (MVA)-vectored candidate vaccines expressing human immunodeficiency virus type 1 (HIV-1) clade A-derived p24/p17 gag fused to a string of HLA class I epitopes, called HIVA, were tested in phase I trials in healthy, HIV-1/2-uninfected adults in Oxford, United Kingdom. Eighteen volunteers were vaccinated with pTHr.HIVA DNA (IAVI-001) alone, 8 volunteers received MVA.HIVA (IAVI-003) alone and 9 volunteers from study IAVI-001 were boosted with MVA.HIVA 9-14 months after DNA priming (IAVI-005). Immunogenicity results observed in these trials was published previously [Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EG-T, et al. An HIV-1 clade A vaccine in clinical trials: stimulation of HIV-specific T cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol 2004;85:911-9]. Here, we report on the safety of the two vaccines and the vaccine regimes. Overall, both candidate vaccines were safe and well tolerated. There were no reported vaccine-related adverse events over the 6-month period of the study and up to 2 years after the last vaccination. There were no moderate or severe local symptoms recorded after the pTHr.HIVA DNA intramuscular administration. Almost all participants experienced local reactogenicity events such as redness and induration after MVA.HIVA intradermal injection. Thus, the results from these initial small phase I trials administering the pTHr.HIVA DNA and MVA.HIVA vaccines either alone or in a prime-boost regime to healthy HIV-1/2-negative adults indicated that the vaccines were safe and warranted further testing of this approach in larger phase I/II studies.

Scientific Publications

HIV vaccine design insights from live attenuated SIV vaccines

Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, Hasenkrug KJ, McDermott AB, Schultz A, Zamb TJ, Boyle R, Desrosiers RC

HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol. 2006;7(1):19-23

Abstract

The International AIDS Vaccine Initiative has established a consortium to elucidate mechanisms of protection conferred by live attenuated simian immunodeficiency virus vaccines in monkeys. Here, the strategies defining key components of the protective immune response elicited by these vaccines are discussed.

Scientific Publications

Cytotoxic T lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in adenovirus boosted and DNA primed Mamu A 01 positive rhesus macaques

McDermott AB, O'Connor DH, Fuenger S, Piaskowski S, Martin S, Loffredo J, Reynolds M, Reed J, Furlott J, Jacoby T, Riek C, Dodds E, Krebs K, Davies ME, Schleif WA, Casimiro DR, Shiver JW, Watkins DI

Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in adenovirus-boosted and DNA-primed Mamu-A*01-positive rhesus macaques. J. Virol. 2005;79(24):15556-66

Abstract

Adenovirus 5 (Ad5) vectors show promise as human immunodeficiency virus vaccine candidates. Indian rhesus macaques vaccinated with Ad5-gag controlled simian-human immunodeficiency virus SHIV89.6P viral replication in the absence of Env immunogens that might elicit humoral immunity. Here we immunized 15 macaques using either a homologous Ad5-gag/Ad5-gag (Ad5/Ad5) or a heterologous DNA-gag/Ad5-gag (DNA/Ad5) prime-boost regimen and challenged them with a high dose of simian immunodeficiency virus SIVmac239. Macaques vaccinated with the DNA/Ad5 regimen experienced a brief viral load nadir of less than 10,000 viral copies per ml blood plasma that was not seen in Mamu-A*01-negative DNA/Ad5 vaccinees, Mamu-A*01-positive Ad5/Ad5 vaccinees, or vaccine-naive controls. Interestingly, most of these animals were not durably protected from disease progression when challenged with SIVmac239. To investigate the reasons underlying this short-lived vaccine effect, we investigated breadth of the T-cell response, immunogenetic background, and viral escape from CD8+ lymphocytes that recognize immunodominant T-cell epitopes. We show that these animals do not mount unusually broad cellular immune response, nor do they express unusual major histocompatibility complex class I alleles. Viral recrudescence occurred in four of the five Mamu-A*01-positive vaccinated macaques. However, only a single animal in this group demonstrated viral escape in the immunodominant Gag181-189 CM9 response. These results suggest that viral 'breakthrough' in vaccinated animals and viral escape are not inextricably linked and underscore the need for additional research into the mechanisms of vaccine failure.

Scientific Publications

Induction of human immunodeficiency virus type 1 specific T cells by a bluetongue virus tubule vectored vaccine prime recombinant modified virus Ankara boost regimen

Larke N, Murphy A, Wirblich C, Teoh D, Estcourt MJ, McMichael AJ, Roy P, Hanke T

Induction of human immunodeficiency virus type 1-specific T cells by a bluetongue virus tubule-vectored vaccine prime-recombinant modified virus Ankara boost regimen. J. Virol. 2005;79(23):14822-33

Abstract

In the absence of strategies for reliable induction of antibodies broadly neutralizing human immunodeficiency virus type 1 (HIV-1), vaccine efforts have shifted toward the induction of cell-mediated immunity. Here we describe the construction and immunogenicity of novel T-cell vaccine NS1.HIVA, which delivers the HIV-1 clade A consensus-derived immunogen HIVA on the surface of tubular structures spontaneously formed by protein NS1 of bluetongue virus. We demonstrated that NS1 tubules can accommodate a protein as large as 527 amino acids without losing their self-assembly capability. When injected into BALB/c mice by several routes, chimeric NS1.HIVA tubules induced HIV-1-specific major histocompatibility complex class I-restricted T cells. These could be boosted by modified virus Ankara expressing the same immunogen and generate a memory capable of gamma interferon (IFN-gamma) production, proliferation, and lysis of sensitized target cells. Induced memory T cells readily produced IFN-gamma 230 days postimmunization, and upon a surrogate virus challenge, NS1.HIVA vaccine alone decreased the vaccinia virus vv.HIVA load in ovaries by 2 orders of magnitude 280 days after immunization. Thus, because of its T-cell immunogenicity and antigenic simplicity, the NS1 delivery system could serve as a priming agent for heterologous prime-boost vaccination regimens. Its usefulness in primates, including humans, remains to be determined.

Scientific Publications

Altered primary CD8 T cell response to a modified virus Ankara MVA vectored vaccine in the absence of CD4 T cell help

Estcourt MJ, McMichael AJ, Hanke T

Altered primary CD8+ T cell response to a modified virus Ankara(MVA)-vectored vaccine in the absence of CD4+ T cell help. Eur. J. Immunol. 2005;35(12):3460-7

Abstract

T cell receptor-transgenic F5 mice were used to assess primary CD8+ T cell responses to a modified virus Ankara (MVA)-vectored vaccine in the absence of CD4+ T cell help. Naive, CD8-enriched, CFSE-labelled F5 cells were transferred into normal or CD4+ cell-depleted mice and the mice were vaccinated with MVA.HIVA-NP. At different time points during the primary response, F5 cells were re-isolated and analysed on divisional basis for a number of parameters. We demonstrated that the primary CD8+ T cell response in the absence of CD4+ T cell help differed from that in normal CD4+ cell-undepleted mice. While in the absence of CD4+ T cell help, the initial migratory progress from the local response to a systemic one was not grossly affected, the proportion of dying F5 cells during the expansion phase was markedly increased and resulted in an overall smaller expansion and significantly decreased frequency of CD8+ T cell memory after contraction. T cells primed without help displayed accelerated proliferation and activation, while expression of interferon-gamma remained similar. These phenomena were observed in the lymph nodes draining the MVA.HIVA-NP immunization site and were similar, but delayed by 2-3 days in spleen and non-draining lymph nodes.

Scientific Publications

Cytolytic T lymphocytes CTLs from HIV 1 subtype C infected Indian patients recognize CTL epitopes from a conserved immunodominant region of HIV 1 Gag and Nef

Thakar MR, Bhonge LS, Lakhashe SK, Shankarkumar U, Sane SS, Kulkarni SS, Mahajan BA, Paranjape RS

Cytolytic T lymphocytes (CTLs) from HIV-1 subtype C-infected Indian patients recognize CTL epitopes from a conserved immunodominant region of HIV-1 Gag and Nef. J. Infect. Dis. 2005;192(5):749-59

Abstract

Analysis of the human immunodeficiency virus type 1 (HIV-1) cytolytic T lymphocyte (CTL) epitopes recognized by the targeted population is critical for HIV-1 vaccine design. Peripheral blood mononuclear cells from 47 Indian subjects at different stages of HIV-1 infection were tested for HIV-1 Gag-, Nef-, and Env-specific T cell responses by interferon (IFN)- gamma enzyme-linked immunospot (ELISPOT) assay, using pools of overlapping peptides. The Gag and Nef antigens were targeted by 83% and 36% of responders. Five immunodominant regions, 4 in Gag and 1 in Nef, were identified in the study; these regions are conserved across clades, including the African subtype C clade. Three antigenic regions were also found to be recognized by CTLs of the study participants. These regions were not identified as immunodominant regions in studies performed in Africa, which highlights the importance of differential clustering of responses within HIV-1 subtype C. Twenty-six putative epitopes--15 Gag (10 in p24 and 5 in p17), 10 Nef, and 1 Env (gp 41)--were predicted using a combination of peptide matrix ELISPOT assay and CTL epitope-prediction software. Ninety percent of the predicted epitopes were clustered in the conserved immunodominant regions of the Gag and Nef antigens. Of 26 predicted epitopes, 8 were promiscuous, 3 of which were highly conserved across clades. Three Gag and 4 Nef epitopes were novel. The identification of conserved epitopes will be important in the planning of an HIV-1 vaccine strategy for subtype C-affected regions.

Scientific Publications

Vaccine route dose and type of delivery vector determine patterns of primary CD8 T cell responses

Estcourt MJ, Létourneau S, McMichael AJ, Hanke T

Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur. J. Immunol. 2005;35(9):2532-40

Abstract

The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.