A WORLD WITHOUT AIDS
OUR MISSION
Ensure the development of safe, effective, accessible, preventive HIV vaccines for use throughout the world

OUR VISION
A world without AIDS

WHAT WE DO
Engage communities in HIV prevention research
Establish and advance global partnerships across academia, industry, government, philanthropy and civil society
Leverage our expertise and capacity to catalyze innovation and translate new findings into promising vaccine candidates
Build research capacity in most-affected countries and regions
Drive policies, investments and enabling environments for AIDS vaccine research and development
Help advance other prevention methods that can reduce HIV infections in the near term

We are an international not-for-profit Product Development Partnership.
Dear Partners and Friends,

The 2014 Ebola outbreak ended in 2015 with 11,000 people dead and 29,000 more infected. While this horrible toll is difficult to grasp, it is surpassed weekly by the number of new HIV infections and deaths due to AIDS. More than three decades after the discovery of HIV, we need a vaccine and other new prevention tools to help end AIDS.

Better cross-sector collaboration is essential to expedite the innovation required to overcome the remaining scientific hurdles, and the further development of promising concepts into globally effective and accessible products. IAVI is proud to play an increasingly important role in facilitating these collaborations and in supporting the translational work.

In 2015, IAVI and partners helped further the understanding of the body’s immune responses to HIV. Vaccine candidates designed at IAVI’s Neutralizing Antibody Center at The Scripps Research Institute progressed toward clinical testing. IAVI’s Vaccine Product Development Center now supports the translation of 17 vaccine and other new HIV prevention concepts of external scientists from the laboratory into candidates for initial clinical testing. An IAVI vaccine candidate has shown encouraging results in monkey studies and is now advancing toward clinical evolution.

The Vaccine Immunology Science and Technology for Africa collaboration between clinical research partners in Africa and India, and scientists at IAVI and Emory University, has made significant progress in transferring critical technologies, and training and mentoring of young scientists to strengthen local capacity and ownership in AIDS vaccine research.

Indicative of the growing domestic commitment, the government of Kenya prioritized HIV prevention research and committed to enhanced domestic funding. The Government of India expanded existing and established new collaborations with South Africa and the Netherlands to further HIV prevention research and vaccines.

IAVI’s progress would not have been possible without the steadfast support of our generous donors and the tireless commitment of dedicated partners, researchers, clinicians, advocates and community workers. Nor without all those volunteers who participate in our research studies. They continue to inspire us! We thank them all.

I share this update with great gratitude to my predecessor, Margie McGlynn, for her successful leadership of the organization since July 2011. Since joining IAVI in September 2015, it is my honor to help IAVI write the next chapter of its success story in helping to achieve our vision of a world without AIDS!

Mark Feinberg
A VACCINE IS ESSENTIAL TO END AIDS

Since its appearance in the early 1980s, HIV has infected almost 80 million people worldwide and killed 35 million. Half of the people currently living with the virus do not have access to treatment.

And many of those who do, do not adhere to it as required to reduce the risk of infecting others. Investments in current treatment and prevention programs in the past years have not reduced new annual HIV infections. In 2015 alone, HIV newly infected more than 2 million people and killed more than 1 million.

Modeling analyses suggest that even with strongly increased funding and implementation of current treatment and prevention programs, hundreds of thousands of people in low- and middle-income countries will be newly infected with HIV annually, for decades to come. By averting the majority of new HIV infections, an effective and well-adoption vaccine, added to the comprehensive response, can help end AIDS.

REDUCTIONS OF NEW ANNUAL HIV INFECTIONS (MILLIONS) IN LOW- AND MIDDLE-INCOME COUNTRIES IN YEARS AFTER VACCINE INTRODUCTION*

Enhanced AIDS Response

Current Trends

*Illustrative vaccine with an assumed efficacy of 70% not representative of any specific candidate. Coverage in generalized epidemics: routine 10 years old 70%, catch up 11–14 years old 60%, 15–17 years old 50%, 18–49 years old 50%. Coverage in concentrated epidemics: high-risk populations 50%. Coverage after vaccine roll-out by 2030, WHO and Avahan.
Nearly two thirds of all AIDS-related deaths and new HIV infections occur in Sub-Saharan Africa. India, an emerging power in vaccine research, development and manufacturing, is home to the world’s third-largest share of people living with HIV. Women and girls, young people and other vulnerable or stigmatized groups such as men who have sex with men, sex workers and transgender people are hit the hardest. Researchers need a deep understanding of the epidemic in these regions and for these populations. Any new prevention option must meet their needs and be integrated into broader public health and sustainable development efforts to enable the broad adoption that is required for effective reduction of new HIV infections.

An AIDS Vaccine Will Protect and Empower Women and Girls

HIV continues to disproportionately impact women and girls. Their greater biological vulnerability to HIV, compounded by a lethal mix of legal, social and economic inequities – child marriage, limited power to negotiate condom use and widespread gender-based violence – fuels the AIDS epidemic. AIDS remains the leading cause of death among women of reproductive age – driven by the epidemic in Sub-Saharan Africa where women account for almost 60% of people living with HIV and three girls become infected for every two boys. With half of the population in Sub-Saharan Africa being younger than 19, the proportion of women living with and dying from HIV is likely to rise even more – which threatens to reverse current success in combating AIDS globally.

Programs like the Determined, Resilient, Empowered, AIDS-free, Mentored and Safe (DREAMS) initiative, launched in 2015 by the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR), the Bill & Melinda Gates Foundation and the Nike Foundation work to specifically reduce new HIV infections among women and girls.

The sustainability of such efforts will demand a wider range of new HIV prevention tools, recognizing that no one option will fit all needs. Experience with the adoption of existing prevention options shows that researchers must better understand the complex social, cultural and behavioral stars that must align for any future product to successfully prevent HIV infection in “real life.” Women and girls need a wider array of more appropriate prevention tools, including a vaccine. Women could obtain a vaccine confidentially, without needing partner consent. Girls and boys could be vaccinated against HIV before exposure to the virus. Lives would be saved. Healthy girls and boys would be more likely to finish school. Healthy women could continue to provide for their families. Women and girls that have choices can take more control of their health.

Initiatives by IAVI and others to engage women and girls in research and to combine this research with social support will advance both vaccine development as well as better HIV prevention and treatment until an AIDS vaccine becomes available.

– Francine Ntoumi, Congolese Foundation for Medical Research
IAVI and partners continued to engage communities and helped ensure they benefit from research efforts even before vaccines become available.

A better understanding of the social, cultural and economic challenges of vulnerable populations such as adolescent girls and women, young people, men who have sex with men and fishing communities helps inform the design of vaccines and other new prevention interventions that can be adopted broadly and rapidly by these populations, and also drives the development of inclusive and effective health policies.

WOMEN AND GIRLS

The Females Rising through Education, Support and Health (FRESH) study in Durban, South Africa follows young women at high risk of HIV infection, and combines research and social support. Women receive life- and job skills training, prevention counseling and testing to diagnose new HIV infections early. If diagnosed HIV positive, they begin antiretroviral treatment immediately, now provided through a partner-supported companion protocol. An introduction of antiretroviral treatment as pre-exposure prophylaxis is being evaluated.

FRESH started in 2012 with a target size of 300 women. At the end of 2015, the study followed 454 women and demonstrated the ability to detect new HIV infections early through frequent monitoring. Three of four women who completed the study found jobs or internships, or returned to school. The researchers continue to follow 37 FRESH volunteers with acute HIV infection. Their blood samples, which offer critical information to understanding the early stages and progression of HIV infection, are also being used by IAVI’s Vaccine Immunology Science and Technology for Africa (VISTA) partnership to further the development of next-generation AIDS vaccine candidates.

1 Funded by the Bill & Melinda Gates Foundation, AIDS Healthcare Foundation, Microsoft Research and IAVI, and conducted by the HIV Pathogenesis Program (HPP).

FISHING COMMUNITIES

AIDS vaccine research efforts in fishing communities on the shores and islands of Lake Victoria have led IAVI to inform and mobilize numerous implementing partners to address a wide range of social and health problems. IAVI continued its support of the Lake Victoria Consortium for Health Research that aims to better understand the HIV epidemic on Lake Victoria and to create a platform for HIV prevention research, as well as research into other communicable and non-communicable diseases.

MEN WHO HAVE SEX WITH MEN (MSM)

The Kenya Medical Research Institute-Wellcome Trust Research Programme used IAVI’s research and community outreach framework to address service delivery gaps that affect MSM in Coastal Kenya. IAVI also helped improve health care by increasing access to MSM-friendly services and MSM engagement in its civil society outreach program.

YOUNG PEOPLE

IAVI’s partnership with the Desmond Tutu HIV Foundation (DTHF) provides early career investigators from all over Africa with an opportunity, through adolescent health research fellowships, to benefit from the established DTHF expertise in adolescent engagement and HIV prevention research.

Photo by Jennifer Garrett

RESEARCH FOR DEVELOPMENT – COMMUNITY ENGAGEMENT 2015
Successful AIDS vaccine development will require increased contribution to and ownership of the research effort by those regions and countries that are hit the hardest by the epidemic.

IAVI facilitates collaboration around the world to build research capacity in Sub-Saharan Africa and India, and to strengthen North-South and South-South knowledge and technology transfer while empowering next-generation researchers and clinicians to lead the fight to halt this epidemic that devastates their families and communities. Such investments advance AIDS vaccine research and development, strengthen local health research more broadly and support the overall sustainable development of these societies and countries.

KNOWLEDGE AND TECHNOLOGY TRANSFER

In 2015, the Government of India, supported by IAVI, expanded existing and established new bilateral collaborations with other countries such as South Africa and Netherlands to further HIV/AIDS prevention research and vaccines, including technology and knowledge transfer.

TRAINING AND MENTORING

IAVI’s investment in the next generation of scientists continued to grow. The International Training Program now supports eight PhD and 27 master’s degree students in Africa (45% women). VISTA trainings included five researchers and three staff in Africa in addition to 15 Indian scientists who were trained in critical technologies. Six post-doctoral staff joined partner clinical research centers.

IAVI funded and convened 50 early- and mid-career African researchers (54% women) to the first annual Early Investigators’ Network Meeting that offered training on scientific and manuscript writing, communication and advocacy, mentorship and networking as part of its efforts to enable investigator-initiated projects, advanced degree and post-doctoral mentoring.

Five scholars attended the International Traineeships in AIDS Prevention Science course, offered by IAVI in collaboration with the University of California San Francisco since 2012, bringing the total number of trained early career African scientists to 21 (52% women).

RESEARCH CAPACITY

The Vaccine Immunology Science and Technology for Africa (VISTA) program continued to build capacity in immunology, virology and test systems (assays) that are needed for investigating HIV infection and the effect of immunogens in preventing it. The work aims to advance the design and assessment of next-generation immunogens that elicit broadly effective T cell responses and screen immunogens to elicit broadly neutralizing antibodies developed in collaboration with partners in India. An agreement with Wellcome Trust and the Sanger Institute will also co-fund novel bio-informatics programs and broaden capacity building efforts.

Simulated Vaccine Efficacy Trials studies (SiVETs) began in Uganda, Kenya and Zambia to inform the design of future clinical studies of AIDS vaccine candidates. The studies will provide data on HIV incidence, environmental and biological aspects of immune responses and volunteer retention while helping prepare for trial data collection, field management, community engagement and Good Participatory Practices.

Johnson & Johnson called on IAVI and partner capacity expertise at clinical trial sites in Uganda and Kenya for a Phase I study of an Ebola vaccine candidate.

Supported by the U.S. Agency for International Development (USAID)
Research by IAVI and partners yielded new insights into how the immune system appears to control the initial virus burst, how HIV changes and escapes from immune defenses, how disease progression varies by virus strain and how a few people living with HIV naturally produce broadly neutralizing antibodies over time.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.

Protocols C and G, unique studies of early HIV infection that led to the discovery of broadly neutralizing antibodies, continue to stimulate progress and innovation in HIV vaccine research. Investigations of blood samples from Protocol C revealed that the HIV strain someone is first infected with and its capacity to replicate, can have a lasting influence on how the virus disrupts the immune system. A vaccine that targets this ‘founder virus’ could help control disease progression and prevent further transmission.

Work to further characterize antibodies isolated from Protocols C and G continued in 2015. IAVI and partners also continued to explore genetic, viral and immunological correlates that could help predict the capacity of such antibodies to block the virus from infecting cells.
AIDS vaccine researchers are facing a number of common challenges regardless of their individual approaches, such as inducing strong and lasting immune responses, optimizing and selecting candidates for further development, manufacturing them in quantity and quality required for clinical testing, regulatory and ethical approval of such studies, and engaging local communities.

IAVI helps overcome these bottlenecks by providing product development expertise and validating new technologies, as well as by facilitating broader engagement of and strategic collaboration with leading AIDS vaccine researchers and centers of excellence.

NEUTRALIZING ANTIBODY CONSORTIUM

IAVI and partners at the Vaccine Research Centre (VRC) of the U.S. National Institutes of Health, as well as other research institutions have identified dozens of promising broadly neutralizing antibodies against HIV and helped inform multiple vaccine strategies. IAVI’s Neutralizing Antibody Consortium (NAC) at The Scripps Research Institute (TSRI) continues to play a critical role in this collaborative effort. Progress made in 2015 helped advance candidates like BG505 SOSIP and BG505 NFL, as well as eOD-GT8 toward clinical testing (see next page). The NAC is also fully integrated in the advancement of partnerships to further local research capacity through North-South and South-South collaborations and transfer.

REPLICATING VECTOR PLATFORM FOR STRONG AND LASTING IMMUNE RESPONSES

Replicating viruses as vectors to deliver genes of HIV proteins can produce multiple copies of an immunogen and help enhance the strength and duration of immune responses. IAVI has prioritized three such vectors for future work: the Vesicular Stomatitis Virus (VSV) vector, the Canine Distemper Virus (CDV) vector and a redesigned Sendai Virus (SeV) vector. After very encouraging results with VSV, a vector that is also being used in Ebola vaccine development, a 2016 comparative study will determine which of the three vectors is best suited to present immunogens in a way to elicit strong and lasting immune responses.

TECHNOLOGY TO ACCELERATE IMMUNOGEN OPTIMIZATION, SELECTION AND MANUFACTURING

IAVI invested in a new partnership with the biotechnology company CureVac to explore the delivery of HIV envelope protein genes using mRNA technology that could allow for faster and cheaper optimization, screening, selection and larger-scale manufacturing of immunogens than gene delivery through DNA or delivery of proteins.

PLATFORMS AND COLLABORATIONS TO ADVANCE AIDS VACCINE RESEARCH GLOBALLY

NEW AIDS VACCINE RESEARCH COLLABORATIONS IN EUROPE

In 2015, funded under the European Union Framework Program for Research & Innovation, Horizon 2020, the European AIDS Vaccine Initiative (EAVI), led by Imperial College in the UK; and the European HIV Vaccine Alliance (EVA), led by the French Institut National de la Santé et de la Recherche Médicale (INSERM), were initiated. IAVI is a partner in both research consortia, providing product development, laboratory analyses and communications support.

EXPANDED VACCINE PRODUCT DEVELOPMENT CENTER (VxPDC)

IAVI expanded its support to 17 AIDS vaccine and prevention researchers. Supported by the Bill & Melinda Gates Foundation, the VxPDC helps investigators advance the development of their immunogens by offering an expanding range of services that include pre-clinical safety evaluation, regulatory affairs, process development, manufacturing, clinical development, project management and quality assurance. In 2015, a proposal to support the characterization and manufacturing of HIV envelope proteins as immunogens through the VxPDC was submitted to the U.S. National Institutes of Health and was subsequently awarded.

mRNA TECHNOLOGY TO ACCELERATE IMMUNOGEN OPTIMIZATION, SELECTION AND MANUFACTURING

IAVI invested in a new partnership with the biotechnology company CureVac to explore the delivery of HIV envelope protein genes using mRNA technology that could allow for faster and cheaper optimization, screening, selection and larger-scale manufacturing of immunogens than gene delivery through DNA or delivery of proteins.

PHOTOGRAPHY

Photo by Joy Glenn Photography
An effective AIDS vaccine will need to activate both broadly effective antibodies and T cells to prevent and control HIV across a broad spectrum of the many variants of HIV. Strong and lasting protection, provided in as few doses as possible, will be critical to ensuring cost-effectiveness and broad adoption by users.

Various HIV proteins are being explored as vaccine candidates to elicit the desired immune responses, including a protein on the HIV envelope that the virus uses to fuse with its host cells. Such proteins can be delivered directly or through their genes. If delivered as genes, the body must translate these genes into proteins before they can induce immune responses. Genes can be delivered as ‘naked’ DNA or into viruses as vectors that can facilitate translation. Vectors with the ability to replicate can amplify inserted genes in harmless viruses as vectors that can facilitate translation. Gene-based prevention

HIV-CORE004 — Ad5GRIN + MVA HIV conserved +/- DNA HIV conserved trial progressed to the last volunteer visit to potentially confirm that immune responses in African populations are comparable to those in European populations. Preliminary data supported the decision to prepare for next-generation immunogens trials. HIV-V-A004 — Ad26 Mosaic + gp140 trial aimed at investigating immunogenicity and safety, and the breadth of the immune response, has completed its enrolment. X001 — CNS4 trial progressed to the last volunteer visit. The results will further the study of envelope immunogens by providing baseline data and enabling the optimization of assays required for antibody response analysis. S001 — gag SeV-O/Ad35 (completed) marked the first trial of a replicating HIV vaccine vector in Africa. An ongoing study compares the ability of a second-generation Sendai virus (SeV) to deliver envelope protein with Vascular Stomatitis Virus (VSV) and Canine Distemper Virus (CDV).

A003 — AAV-PG9 trial evaluating transferring a gene of a bNAb (PG9) using replicating Adeno-Associated Virus (AAV) to safely produce the antibody in muscle cells, advanced to the highest dose group toward full enrollment in 2017. BG005 NFL work continues with Selexis producing material for ongoing pre-clinical testing. CureVac is also testing whether the immunogen could be delivered through their mRNA technology in the quality and quantity required for clinical testing. BG005 SOSIP gp140 work continues with manufacturing and process development for clinical testing planned for early 2017 at Catalent Pharma and KBI Biopharma. eOD-GTS produced promising antibody precursors in mice suggesting it could be a good first step in a series of immunizations to elicit broadly effective antibodies. A Phase I clinical trial is planned for 2017.

BG005 VSV delivers an envelope protein gene by using the replicating VSV with 67% efficacy in protecting rhesus macaques. Preparations for refined animal studies prior to Phase I clinical trials are under way. CH505 VSV introduces an envelope protein gene by using inactivated VSV. Continued studies, with anticipated results in 2016, are evaluating if this method induces the desired immune response. BG005 CDV work continues to optimize the replicating CDV for delivery of HIV envelope protein genes. Results from a comparative study with VSV and SeV will be available in 2016.
Collaborative advocacy for supportive UN sustainable development goals.

AIDS-Fondet has worked with IAVI since 2001 to jointly advocate for the importance of an AIDS vaccine to halt new HIV infections and end AIDS. We advocate for a comprehensive response to HIV/AIDS, one that provides the most impactful response to this epidemic with the tools we have, as well as sustained investment in developing new tools, including a preventive vaccine.

We engage other civil society organizations and product development partnerships, researchers and governments since government leadership, political will and financing are critical components to achieving an HIV/AIDS vaccine. Our advocacy also aims to ensure supportive global health and development agendas. These agendas are critical references for national governments in defining their research and health policies.

In September 2015, the United Nations (UN) adopted Sustainable Development Goals (SDGs) that support vaccines, the fight to end diseases including HIV/AIDS, and the development of new health tools—achievements that AIDS-Fondet, IAVI and partners have strongly advocated for.

Together, we remain committed to the development of SDG indicators that monitor research and development investment and impact, inform national policies and ensure accountability. We also continue to call for an inclusive response—one that ensures access to treatment, prevention and care for all in need, and one that fully respects sexual and reproductive health and rights.

Collaborative advocacy must continue to ensure HIV/AIDS remains a priority in global health and development agendas, as well as in national policies, and to ensure continued support for valuable new health tools such as an HIV/AIDS vaccine.

— Laura Kirkegaard, AIDS-Fondet, Denmark

HIV PREVENTION RESEARCH AND ENHANCED DOMESTIC FUNDING IN KENYA AND INDIA

Global health goals have little impact when they fail to translate into national health priorities and policies. IAVI and partners work to connect global and local advocacy and policy work. In 2015, Kenya endorsed a new five-year HIV/AIDS Strategic Framework and an associated HIV/AIDS Research Agenda. They aim for universal access to comprehensive HIV prevention, treatment and care by 2030 while highlighting priority biomedical, behavioral and implementation research to accelerate rollout, including vaccines. The Strategic Framework and Research Agenda were informed by the Kenya Prevention Revolution Road Map, IAVI, a member of the core design group, provided its experience to develop this pioneering roadmap.

In June 2015, Kenya’s National AIDS Control Council, supported by IAVI, launched the HIV Research Domestic Financing Project to develop a roadmap for increasing the domestic contribution to the financing of the HIV/AIDS Research Agenda from 5% to 50% by 2019.

“Indeed, Kenya continues to prioritize and invest in preventive HIV vaccine development as a key element of our globally acknowledged prevention revolution roadmap.”—Uhuru Kenyatta, President of the Republic of Kenya, side event on ending AIDS, UN General Assembly, September 27, 2015

Building on experience in Kenya, IAVI is currently exploring new advocacy partnerships with The Joint United Nations Programme on HIV/AIDS (UNAIDS) and the East Africa Health Research Commission (EAHRC) to boost domestic financing of HIV research for other countries in East and Southern Africa.

Also in 2015, the Government of India, supported by IAVI and as part of expanded and new bilateral collaborations with other countries such as South Africa and Netherlands, enhanced its financial commitment toward HIV/AIDS prevention research and vaccines.
ASSETS

- Cash & Investments: $47.9M
- Grants Receivable: $26.8M
- Fixed Assets: $10.5M
- Other: $1.3M

TOTAL ASSETS

- $86.5M

Liabilities

- $28.4M

Net Assets

- $58.1M

TOTAL LIABILITIES & ASSETS

- $86.5M

REVENUE

SOURCES OF REVENUE

- Grants and Contributions
 - Governments: 37.8M
 - Foundations/Individuals: 23.5M
 - Investment Income & Other: 1.4M

TOTAL

- $62.7M

EXPENSES

PROGRAM VS. NON-PROGRAM EXPENSES

- Research & Development: 52.3M
- Advocacy, Policy & Communications: 6.3M
- Administration: 7.0M
- Fundraising: 2.8M

TOTAL

- $68.4M

R&D PROGRAM BY FOCUS AREA

- **Clinical Development**
 - 42%
- **Replicating Vectors**
 - 9%
- **Vaccine Product Development Center**
 - 14%
- **Neutralizing Antibodies**
 - 35%
- **Total**
 - 100%

Data as of 31 December 2015
WHERE TO FIND IAVI AND OUR PARTNERS

Advocacy partners

IAVI Offices
IAVI Laboratories

Scientific partners
IAVI Neutralizing Antibody Consortium

Clinical research centers

CLINICAL RESEARCH CENTER PARTNERS

Aurum Institute, South Africa
Kenya AIDS Vaccine Initiative - Institute for Clinical Research
Kenya Medical Research Institute - Centre for Geographic Medicine Research - Coast
Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS
National AIDS Research Institute, India
National Institute for Research in Tuberculosis, India
Projet San Francisco, Rwanda
St. Stephen's AIDS Trust, United Kingdom
University of Surrey, United Kingdom
Uganda Virus Research Institute-International AIDS Vaccine Initiative HIV Vaccine Program
University of KwaZulu-Natal HIV Pathogenesis Programme, South Africa
YR Gaitonde Centre for AIDS Research and Education, India
Zambia Emory HIV Research Project
Alex Godwin Coutinho (Chair)
Executive Director, Rwanda, Partners in Health

The Rt. Hon. the Lord Fowler
Former U.K. Secretary of State for Health and Social Security, Vice Chair of All-Party Parliamentary Group on HIV and AIDS

Eric Paul Goosby
Professor of Medicine, Global Health Sciences, University of California, San Francisco. U.S. Ambassador, former U.S. Global AIDS Coordinator and head of U.S. President’s Emergency Plan on AIDS Relief (PEPFAR)

Adel A.F. Mahmoud
Professor, Department of Molecular Biology and the Woodrow Wilson School of Public and International Affairs, Princeton University

Purnima Mani
President and Chief Executive, Pathfinder International

Francine Ntoumi
Founder, Chair and Executive Director, Congolese Foundation for Medical Research

Helen Rees*
Executive Director, Wits Institute of Reproductive Health and HIV, School of Clinical Medicine, University of Witwatersrand

Moncef Slaoui
Chairman, Vaccines, GSK

Mary C. Tydings (Chair of the Nominating Committee)
Managing Director, Russell Reynolds Associates, Inc.

Anne M. VanLent (Treasurer, Chair of the Audit and Finance Committee)
President, AMV Advisors

Mark Feinberg***
President and CEO, IAVI

Labeeb Abboud
Senior Vice President & General Counsel, IAVI

IAVI BOARD

* Through March 2015
** Through August 2015
*** As of September 2015
AN AIDS VACCINE WILL CHANGE THE WORLD