Koopman G, Mortier D, Hofman S, Niphuis H, Fagrouch Z, Norley S, Sutter G, Liljeström P, Heeney JLVaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J. Gen. Virol. 2004;85(Pt 10):2915-24
Candidate human immunodeficiency virus (HIV) vaccine strategies that induce strong cellular immune responses protect rhesus macaques that are infected with recombinant simian/human immunodeficiency virus SHIV89.6p from acute CD4+ T-cell loss and delay progression to AIDS. However, similar strategies have not proven as efficacious in the simian immunodeficiency virus (SIV)mac model of AIDS, an infection that causes a slow, steady loss of CD4+ T-cell function and numbers in rhesus macaques similar to that caused by HIV-1, the principal cause of AIDS in humans. Efforts to increase vaccine efficacy by repeated boosting with the same vector are quickly limited by rising anti-vector immune responses. Here, the sequential use of three different vectors (DNA, Semliki Forest virus and modified vaccinia virus Ankara) encoding the same SIVmac structural and regulatory antigens was investigated and demonstrated to prevent or slow the loss of CD4+ T-cells after mucosal challenge with the highly pathogenic SIVmac251 strain. Of particular interest was an inverse association between the extent of T-helper 2 cytokine responses and steady-state virus load. Although limited in the number of animals, this study provides important proof of the efficacy of the triple-vector vaccine strategy against chronic, progressive CD4+ T-cell loss in the rigorous SIVmac/rhesus macaque model of AIDS.
|
Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski JTRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl. Acad. Sci. U.S.A. 2004;101(32):11827-32
Murine leukemia viruses (MLVs) have been classified as N-tropic (N-MLV) or B-tropic (B-MLV), depending on their ability to infect particular mouse strains. The early phase of N-MLV infection is blocked in the cells of several mammalian species, including humans. This block is mediated by a dominant host factor that targets the viral capsid soon after virus entry into the cell has been achieved. A similar block to HIV-1 in rhesus monkey cells is mediated by TRIM5alpha. Here we show that human TRIM5alpha is both necessary and sufficient for the restriction of N-MLV in human cells. Rhesus monkey TRIM5alpha, which potently blocks HIV-1 infection, exhibited only modest inhibition of N-MLV infection. B-MLV was resistant to the antiviral effects of both human and rhesus monkey TRIM5alpha; susceptibility to TRIM5alpha-mediated restriction was conferred by alteration of residue 110 of the B-MLV capsid protein to the amino acid found in the N-MLV capsid. Our results demonstrate that species-specific variation in TRIM5alpha governs its ability to block infection by diverse retroviruses.
|
Friedrich TC, McDermott AB, Reynolds MR, Piaskowski S, Fuenger S, De Souza IP, Rudersdorf R, Cullen C, Yant LJ, Vojnov L, Stephany J, Martin S, O'Connor DH, Wilson N, Watkins DIConsequences of cytotoxic T-lymphocyte escape: common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts. J. Virol. 2004;78(18):10064-73
Cytotoxic T lymphocytes (CTL) are associated with control of immunodeficiency virus infection but also select for variants that escape immune recognition. Declining frequencies of epitope-specific CTL frequencies have been correlated with viral escape in individual hosts. However, escape mutations may give rise to new epitopes that could be recognized by CTL expressing appropriate T-cell receptors and thus still be immunogenic when escape variants are passed to individuals expressing the appropriate major histocompatibility complex class I molecules. To determine whether peptide ligands that have been altered through escape can be immunogenic in new hosts, we challenged naïve, immunocompetent macaques with a molecularly cloned simian immunodeficiency virus (SIV) bearing common escape mutations in three immunodominant CTL epitopes. Responses to the altered peptides were barely detectable in fresh samples at any time after infection. Surprisingly, CTL specific for two of three escaped epitopes could be expanded by in vitro stimulation with synthetic peptides. Our results suggest that some escape variant epitopes evolving in infected individuals do not efficiently stimulate new populations of CTL, either in that individual or upon passage to new hosts. Nevertheless, escape variation may not completely abolish an epitope's immunogenicity. Moreover, since the mutant epitope sequences did not revert to wild type during the study period, it is possible that low-frequency CTL exerted enough selective pressure to preserve epitope mutations in viruses replicating in vivo.
|
Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SDA naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. U.S.A. 2004;101(31):11233-8
The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-1 integrase with potent antiviral activity in cell culture and good pharmacokinetic properties. L-870,810 is an inhibitor with an 8-hydroxy-(1,6)-naphthyridine-7-carboxamide pharmacophore. The compound inhibits HIV-1 integrase-mediated strand transfer, and its antiviral activity in vitro is a direct consequence of this ascribed effect on integration. L-870,810 is mechanistically identical to previously described inhibitors from the diketo acid series; however, viruses selected for resistance to L-870,810 contain mutations (integrase residues 72, 121, and 125) that uniquely confer resistance to the naphthyridine. Conversely, mutations associated with resistance to the diketo acid do not engender naphthyridine resistance. Importantly, the mutations associated with resistance to each of these inhibitors map to distinct regions within the integrase active site. Therefore, we propose a model of the two inhibitors that is consistent with this observation and suggests specific interactions with discrete binding sites for each ligand. These studies provide a structural basis and rationale for developing integrase inhibitors with the potential for unique and nonoverlapping resistance profiles.
|
Doms RWViral entry denied. N. Engl. J. Med. 2004;351(8):743-4
|
Davis CW, Doms RWHIV transmission: closing all the doors. J. Exp. Med. 2004;199(8):1037-40
|
Nkolola JP, Wee EG, Im EJ, Jewell CP, Chen N, Xu XN, McMichael AJ, Hanke TEngineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther. 2004;11(13):1068-80
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
|
Wang J, Babcock GJ, Choe H, Farzan M, Sodroski J, Gabuzda DN-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology 2004;324(1):140-50
CXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000-fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and SDF-1alpha-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Env-co-receptor interactions.
|
Emini EA, Koff WCAIDS/HIV. Developing an AIDS vaccine: need, uncertainty, hope. Science 2004;304(5679):1913-4
|
Biorn AC, Cocklin S, Madani N, Si Z, Ivanovic T, Samanen J, Van Ryk DI, Pantophlet R, Burton DR, Freire E, Sodroski J, Chaiken IMMode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry 2004;43(7):1928-38
The linear peptide 12p1 (RINNIPWSEAMM) was previously isolated from a phage display library and was found to inhibit interaction of HIV-1 gp120 with both CD4 and a CCR5 surrogate, mAb 17b [Ferrer, M., and Harrison, S. (1999) J. Virol. 73, 5795-5802]. In this work, we investigated the mechanism that leads to this dual inhibition of gp120 binding. We found that there is a direct interaction of 12p1 with gp120, which occurs with a binding stoichiometry of 1:1. The peptide inhibits binding of monomeric YU2 gp120 to both sCD4 and 17b at IC(50) values of 1.1 and 1.6 microM, respectively. The 12p1 peptide also inhibited the binding of these ligands to trimeric envelope glycoproteins, blocked the binding of gp120 to the native coreceptor CCR5, and specifically inhibited HIV-1 infection of target cells in vitro. Analyses of sCD4 saturation of monomeric gp120 in the presence or absence of a fixed concentration of peptide suggest that 12p1 suppression of CD4 binding to gp120 is due to allosteric inhibitory effects rather than competitive inhibition of CD4 binding. Using a panel of gp120 mutants that exhibit weakened inhibition by 12p1, the putative binding site of the peptide was mapped to a region immediately adjacent to, but distinguishable from, the CD4 binding footprint. In the case of the peptide, the effects of single-12p1 residue substitutions and various peptide truncations indicate that the side chain of Trp7 and other structural elements of 12p1 are critical for gp120 binding or efficient inhibition of binding of a ligand to gp120. Finally, 12p1 was unable to inhibit binding of sCD4 to a gp120 mutant that is believed to resemble the CD4-induced conformation of gp120. These results suggest that 12p1 preferentially binds gp120 prior to engagement of CD4; binding of the peptide to gp120 limits the interaction with ligands (CD4 and CCR5) that are generally crucial for viral entry. More importantly, these results indicate that 12p1 binds to a unique site that may prove to be a prototypic target for novel CD4-gp120 inhibitors.
|