Antanasijevic A, Bowman CA, Kirchdoerfer RN, Cottrell CA, Ozorowski G, Upadhyay AA, Cirelli KM, Carnathan DG, Enemuo CA, Sewall LM, Nogal B, Zhao F, Groschel B, Schief WR, Sok D, Silvestri G, Crotty S, Bosinger SE, Ward AB
From structure to sequence: Antibody discovery using cryoEM. Sci Adv 2022;8(3):eabk2039 doi: 10.1126/sciadv.abk2039
One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.
|
Wall KM, Nyombayire J, Parker R, Ingabire R, Bizimana J, Mukamuyango J, Mazzei A, Price MA, Unyuzimana MA, Tichacek A, Allen S, Karita E
Antibiotic-resistant and changes to the 2019 Rwandan National STI Guidelines. Int J STD AIDS 2021;:9564624211053242 doi: 10.1177/09564624211053242
Topics: Capacity Building and Research Preparedness
Keywords: IAVI 009
|
Feinberg MB, Russell ND, Shattock RJ, Youngdahl KB
The importance of partnerships in accelerating HIV vaccine research and development. J Int AIDS Soc 2021;24 Suppl 7:e25824 doi: 10.1002/jia2.25824
Topics: Capacity Building and Research Preparedness,
|
Agostinetto R, Rossi M, Dawson J, Lim A, Simoneau MH, Boucher C, Valldorf B, Ross-Gillespie A, Jardine JG, Sok D, Burton DR, Hassell T, Broly H, Palinsky W, Dupraz P, Feinberg M, Dey AK
Rapid cGMP Manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools. Biotechnol Bioeng 2021; doi: 10.1002/bit.27995
Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally-derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the COVID-19 pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-SARS-CoV2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for pre-clinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach. This article is protected by copyright. All rights reserved.
Topics: Capacity Building and Research Preparedness
|
Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J
Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 2021;16(11):e0260118 doi: 10.1371/journal.pone.0260118
Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects' cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.
Topics: HIV Transmission, HIV Vaccine Immunology
|
Laher F, Richardson SI, Smith P, Sullivan P, Abrahams AG, Asowata OE, Bitangumutwenzi P, Dabee S, Dollah A, Fernandez N, Langat RK, Bose DL, Likhitwonnawut U, Mullick R, Resop RS, Sutar J, Thompson-Hall AN, Traeger MW, Tuyishime M, Wambui J, Bekker LG, Kaleebu P, McCormack S, O'Connor DH, Warren M, Torri T, Thyagarajan B
HIV prevention in a time of COVID-19: A report from the HIVR4P // Virtual conference 2021. AIDS Res Hum Retroviruses 2021; doi: 10.1089/AID.2021.0138
The HIV Research for Prevention (HIVR4P) conference catalyzes knowledge-sharing on biomedical HIV prevention interventions such as HIV vaccines, antibody infusions, pre-exposure prophylaxis (PrEP) and microbicides in totality - from the molecular details and delivery formulations to the behavioral, social and structural underpinnings. HIVR4P // Virtual was held over the course of two weeks on 27-28 January and 3-4 February 2021 as the COVID-19 pandemic continued to inflict unprecedented harm globally. The HIVR4P community came together with 1,802 researchers, care providers, policy-makers, implementors and advocates from 92 countries whose expertise spanned the breadth of the HIV prevention pipeline from pre-clinical to implementation. The program included 113 oral and 266 poster presentations. This article presents a brief summary of the conference highlights. Complete abstracts, webcasts and daily rapporteur summaries may be found on the conference website (https://www.hivr4p.org/).
|
Umviligihozo G, Muok E, Nyirimihigo Gisa E, Xu R, Dilernia D, Herard K, Song H, Qin Q, Bizimana J, Farmer P, Hare J, Gilmour J, Allen S, Karita E, Hunter E, Yue L
Increased Frequency of Inter-Subtype HIV-1 Recombinants Identified by Near Full-Length Virus Sequencing in Rwandan Acute Transmission Cohorts. Front Microbiol 2021;12:734929 doi: 10.3389/fmicb.2021.734929
Most studies of HIV-1 transmission have focused on subtypes B and C. In this study, we determined the genomic sequences of the transmitted founder (TF) viruses from acutely infected individuals enrolled between 2005 and 2011 into IAVI protocol C in Rwanda and have compared these isolates to viruses from more recent (2016-2019) acute/early infections in three at risk populations - MSM, high risk women (HRW), and discordant couples (DC). For the Protocol C samples, we utilized near full-length single genome (NFLG) amplification to generate 288 HIV-1 amplicons from 26 acutely infected seroconverters (SC), while for the 21 recent seroconverter samples (13 from HRW, two from DC, and six from MSM), we PCR amplified overlapping half-genomes. Using PacBio SMRT technology combined with the MDPseq workflow, we performed multiplex sequencing to obtain high accuracy sequences for each amplicon. Phylogenetic analyses indicated that the majority of recent transmitted viruses from DC and HRW clustered within those of the earlier Protocol C cohort. However, five of six sequences from the MSM cohort branched together and were greater than 97% identical. Recombination analyses revealed a high frequency (6/26; 23%) of unique inter-subtype recombination in Protocol C with 19% AC and 4% CD recombinant viruses, which contrasted with only 6.5% of recombinants defined by sequencing of the gene previously. The frequency of recombinants was significantly higher (12/21; 57%) in the more recent isolates, although, the five related viruses from the MSM cohort had identical recombination break points. While major drug resistance mutations were absent from Protocol C viruses, 4/21 of recent isolates exhibited transmitted nevirapine resistance. These results demonstrate the ongoing evolution and increased prevalence of recombinant and drug resistant transmitted viruses in Rwanda and highlight the importance of defining NFLG sequences to fully understand the nature of TF viruses and in particular the prevalence of unique recombinant forms (URFs) in transmission cohorts.
Topics: HIV Acute Infection, First or Last Southern Author
|
Nkumama IN, Osier FHAMalaria vaccine roller coaster. Nat Microbiol 2021; doi: 10.1038/s41564-021-00982-0
|
Stephenson KE, Julg B, Tan CS, Zash R, Walsh SR, Rolle CP, Monczor AN, Lupo S, Gelderblom HC, Ansel JL, Kanjilal DG, Maxfield LF, Nkolola J, Borducchi EN, Abbink P, Liu J, Peter L, Chandrashekar A, Nityanandam R, Lin Z, Setaro A, Sapiente J, Chen Z, Sunner L, Cassidy T, Bennett C, Sato A, Mayer B, Perelson AS, deCamp A, Priddy FH, Wagh K, Giorgi EE, Yates NL, Arduino RC, DeJesus E, Tomaras GD, Seaman MS, Korber B, Barouch DH
Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nat Med 2021; doi: 10.1038/s41591-021-01509-0
Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4 T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4 T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.
Topics: HIV Neutralizing Antibodies, IAVI Clinical Trial
|
Aljedani SS, Liban TJ, Tran K, Phad G, Singh S, Dubrovskaya V, Pushparaj P, Martinez-Murillo P, Rodarte J, Mileant A, Mangala Prasad V, Kinzelman R, O'Dell S, Mascola JR, Lee KK, Karlsson Hedestam GB, Wyatt RT, Pancera M
Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathog 2021;17(9):e1009543 doi: 10.1371/journal.ppat.1009543
Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 μg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a β-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.
Topics: HIV Neutralizing Antibodies,
|